Neuroscience
-
We have shown that intravenous immunoglobulin (IVIG) contains anti-Aβ autoantibodies and IVIG could induce beta amyloid (Aβ) efflux from cerebrospinal fluid (CSF) to blood in both Multiple Sclerosis (MS) and Alzheimer disease (AD) patients. However, the molecular mechanism underlying IVIG-induced Aβ efflux remains unclear. In this study, we used amyloid precursor protein (AβPP) transgenic mice to investigate if the IVIG could induce efflux of Aβ from the brain and whether low-density lipoprotein receptor-related protein-1 (LRP1), a hypothetic Aβ transporter in blood-CSF barrier (BCB); could mediate this clearance process. ⋯ In the mechanistic study, IVIG could induce Aβ efflux through the in vitro BCB membrane formed by cultured BCB epithelial cells. Both receptor-associated protein (RAP; a functional inhibitor of LRP1), and LRP1 siRNA were able to significantly inhibit the Aβ efflux. Should Aβ prove to be the underlying cause of AD, our results strongly suggest that IVIG could be beneficial in the therapy for AD by inducing efflux of Aβ from the brain through the LRP1 in the BCB.
-
Deep-brain stimulation at high frequencies (HFS) directed to the subthalamic nucleus (STN) is used increasingly to treat patients with Parkinson's disease. However, the mechanism of action by which HFS of the STN achieves its therapeutic effects remains unresolved. Insofar as lesions of the STN have similar therapeutic benefit, a favored hypothesis is that HFS acts by suppressing neural activity in the STN. ⋯ Finally, we demonstrated, in the absence of ether treatment, that HFS and chemical stimulation of the STN with local injections of kainic acid both induced c-fos expression in the globus pallidus, entopeduncular nucleus and substantia nigra. Together these results suggest that the principal action of STN stimulation at high frequencies is to excite rather than inhibit its efferent targets. Given that Parkinsonism has been associated with increased levels of inhibitory output activity from the basal ganglia, it is unlikely that excitation of output structures revealed in this study provides a basis for deep-brain stimulation's therapeutic action.
-
Ibuprofen is a widely used nonsteroidal anti-inflammatory drug that reportedly reduces the risk of Alzheimer's disease (AD) development. The anti-inflammatory effect of ibuprofen occurred via inhibition of cyclooxygenases and anti-amyloidogenesis through modulation of γ-secretase. Presenilin 1 and 2 conditional double-knockout (cDKO) mice exhibited age-dependent memory impairment and forebrain degeneration without elevation of amyloid β deposition. ⋯ Ibuprofen was more effective on six-month-old than on three-month-old cDKO mice. Biochemical analysis demonstrated that the effects of ibuprofen on glial fibrillary acidic protein and CD68 expression levels were uneven in different brain regions of cDKO mice and that age also influenced such effects. Tau hyperphosphorylation and the cleavage of caspase-3 decreased after ibuprofen treatment, and this effect was more significant in the older than the younger group of mice, which was consistent with the results of behavioral tests.
-
We tested the hypothesis that the angiotensinergic neurotransmission, specifically in the paraventricular nucleus of the hypothalamus (PVN), is involved in the cardiovascular modulation during acute restraint stress (RS) in rats. The intravenous pretreatment with the angiotensin AT1 receptor antagonist losartan (5mg/kg) inhibited the pressor response to RS, but did not affect the concomitant RS-evoked tachycardiac response. Because similar effects were observed after the PVN pretreatment with CoCl2, and considering the high density of angiotensin receptors reported in the PVN, we studied the effect of the pretreatment of the PVN with either losartan or the angiotensin-converting enzyme (ACE) inhibitor lisinopril on the RS-evoked cardiovascular response. ⋯ When animals were pretreated with such doses of either losartan or lisinopril, the cardiovascular RS-evoked response was not affected, thus indicating that even if there were a complete leakage of the drug to the periphery, it would not affect the cardiovascular response to RS. This observation favors the idea that the effect of the intravenous injection of 5mg/kg of losartan on the RS-related cardiovascular response would be explained by an action across the blood-brain barrier, possibly in the PVN. In conclusion, the results suggest that an angiotensinergic neurotransmission in the PVN acting on AT1-receptors modulates the vascular component of the RS-evoked cardiovascular response.
-
Caffeine is the psychostimulant most consumed worldwide but concerns arise about the growing intake of caffeine-containing drinks by adolescents since the effects of caffeine on cognitive functions and neurochemical aspects of late brain maturation during adolescence are poorly known. We now studied the behavioral impact in adolescent male rats of regular caffeine intake at low (0.1mg/mL), moderate (0.3mg/mL) and moderate/high (1.0mg/mL) doses only during their active period (from 7:00 P. M. to 7:00 A. ⋯ All tested doses of caffeine decreased the density of glial fibrillary acidic protein and synaptosomal-associated protein-25, but failed to modify neuron-specific nuclear protein immunoreactivity in the hippocampus and cerebral cortex. Caffeine (0.3-1mg/mL) increased the density of brain-derived neurotrophic factor (BDNF) and proBDNF density as well as adenosine A1 receptor density in the hippocampus, whereas the higher dose of caffeine (1mg/mL) increased the density of proBDNF and BDNF and decreased A1 receptor density in the cerebral cortex. These findings document an impact of caffeine consumption in adolescent rats with a dual impact on anxiety and recognition memory, associated with changes in BDNF levels and decreases of astrocytic and nerve terminal markers without overt neuronal damage in hippocampal and cortical regions.