Neuroscience
-
Following injury to a peripheral nerve the denervated distal nerve segment undergoes remarkable changes including loss of the blood-nerve barrier, Schwann cell proliferation, macrophage invasion, and the production of many cytokines and neurotrophic factors. The aggregate consequence of such changes is that the denervated nerve becomes a permissive and even preferred target for regenerating axons from the proximal nerve segment. The possible role that an original end-organ target (e.g. muscle) may play in this phenomenon during the regeneration period is largely unexplored. ⋯ Our results demonstrate that the accuracy of regenerating motor neurons is dependent upon the denervated nerve segment remaining in uninterrupted continuity with muscle. We hypothesized that this influence of muscle on the denervated nerve might be via diffusion-driven movement of biomolecules or the active axonal transport that continues in severed axons for several days in the rat, so we devised experiments to separate these two possibilities. Our data show that disrupting ongoing diffusion-driven movement in a denervated nerve significantly reduces the accuracy of regenerating motor neurons.
-
Depression is a worldwide disability disease associated with high morbidity and has increased dramatically in the last few years. The differential diagnosis and the definition of an individualized therapy for depression are hampered by the absence of specific biomarkers. The aim of this study was to evaluate the phospholipidomic profile of the brain and myocardium in a mouse model of depression induced by chronic unpredictable stress (CUS). ⋯ The enzyme activities of catalase (CAT) and superoxide dismutase (SOD) were found to be decreased in the myocardium and increased in the brain, while glutathione reductase (GR) was decreased in the brain. Our results indicate that in a mouse model for studying depression induced by CUS, the modification of the expression of oxidative stress-related enzymes did not prevent lipid oxidation in organs, particularly in the brain. These observations suggest that depression has an impact on the brain lipidome and that further studies are needed to better understand lipids role in depression and to evaluate their potential as future biomarkers.
-
Paced Auditory Serial-Addition Task (PASAT) is a complex task commonly used to examine patients with diffuse brain damage. A visual version of the neuropsychological test (Paced Visual Serial-Addition Task, PVSAT) has also been introduced to clinical practice, and both versions were adapted to be used in neuroimaging, namely functional magnetic resonance imaging (fMRI). The aim of our work was direct comparison of auditory and visual versions of the paced serial addition test (PASAT/PVSAT) in a within-subject and within-session study and description of the commonalities and differences in both activated and deactivated brain regions. ⋯ Activation in one task and deactivation in the other jointly contributed to significant differences in all occipital and occipitotemporal regions. Both tasks activated right FEF, but activation during PASAT was significantly stronger than during PVSAT. Between-modality differences should be considered when preparing and interpreting neuroimaging experiments.
-
Previous studies have indicated a sparse distribution of multisensory neurons in the transition zones between cortical areas associated with specific sensory modalities. However, little is known about the distribution and functional properties of such neurons. The bimodal visual-auditory neurons in the transition area between visual and auditory cortices in rats were examined to determine whether these neurons are modulated by simultaneous input from visual and auditory modalities. ⋯ Exposing adult animals to combined visual and auditory stimuli resulted in an expansion of bimodal neuron distribution in the visual-auditory transition area. These effects were more pronounced in young animals; in this case, the distribution of visual-auditory neurons extended past the limits of the transition area and invaded the flanking modality-specific cortical areas. These results provide a direct demonstration of the role of sensory experience in shaping cortical structure, which can have implications for neuronal integration and cognitive function.
-
Mindfulness is the state of being attentive to and aware of what is taking place in the present, which is beneficial for reducing stress-related symptoms and improving mental and physical health. Previous studies have demonstrated that meditation practice can improve individuals' mindfulness through modifying functions and structures of multiple brain regions, including the anterior cingulate cortex (ACC), insula, fronto-limbic network, posterior cingulate cortex (PCC), and temporal-parietal junction. ⋯ We found that individuals who were more mindful of the present had greater GM volume in the right hippocampus/amygdala and bilateral ACC, but less GM volume in bilateral PCC and the left orbitofrontal cortex. These results suggest that trait mindfulness is associated with brain regions involved in executive attention, emotion regulation, and self-referential processing, through which mindfulness may exert its beneficial effects on psychological and physical well-being.