Neuroscience
-
N-methyl-d-aspartate receptors (NMDARs) at layer (L)1/primary whisker motor cortex synaptic inputs are distinct from thalamic/striatal (Str) synaptic inputs onto L5 pyramidal neurons in the rat somatosensory cortex. However, the consequences of differential expression of putative GluN3A-containing triheteromeric NMDARs at L1 inputs and GluN2A-containing diheteromeric NMDARs at Str inputs on plasticity of the underlying synapses at the respective inputs remain unknown. Here we demonstrate that L1, but not Str, synapses are potentiated following delta burst stimulation (dBS). ⋯ Our data suggest distinct potentiating paradigms for the two convergent inputs onto pyramidal neurons in the somatosensory cortex and co-dependence of synaptic potentiation on brain wave-tuned frequencies of burst stimulation and subunit composition of underlying NMDARs. A model for predicting the likelihood of enhancing synaptic efficacy is proposed based on Ca(2+) influx through these receptors and integration of EPSPs at these inputs. Together, these findings raise the possibility of input-specific enhancements of synaptic efficacy in neurons as a function of the animal's behavioral state and/or arousal in vivo.
-
Glutamate-induced excitotoxicity involves a state of acute oxidative stress, which is a crucial event during neuronal degeneration and is part of the physiopathology of neurodegenerative diseases. In this work, we evaluated the ability of sulforaphane (SULF), a natural dietary isothiocyanate, to induce the activation of transcription factor Nrf2 (a master regulator of redox state in the cell) in a model of striatal degeneration in rats infused with quinolinic acid (QUIN). Male Wistar rats received SULF (5mg/kg, i.p.) 24h and 5min before the intrastriatal infusion of QUIN. ⋯ Moreover, SULF treatment increased glutathione peroxidase (GPx) activity, while no changes were observed in γ-glutamyl cysteine ligase (GCL) activity. SULF treatment also prevented QUIN-induced oxidative stress (measured by oxidized proteins levels), the histological damage and the circling behavior. These results suggest that the protective effect of SULF could be related to its ability to preserve GSH levels and increase GPx and GR activities.
-
Parkinson's disease (PD) is a debilitating neurodegenerative disorder causing severe motor disabilities resulting from the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) region of the midbrain. MicroRNAs (miRNAs) are small, non-coding RNAs which play a major role in several cellular processes in health and disease by regulating gene expression post-transcriptionally. Aberrant miRNA expression has been detected in post-mortem human PD brain samples, in vitro and in vivo PD models. ⋯ Overexpression of miR-124 after MPP iodide treatment on MN9D cells was found to attenuate the expression of the calpain 1/p25/cdk5 proteins while improving cell survival. These results suggest that miR-124 acts to modulate the expression of calpain/cdk5 pathway proteins in the dopaminergic neurons. A better understanding of the mechanisms controlling the expression of miR-124 will aid in targeting miR-124 for better treatment strategies for PD.
-
Embryonic stem (ES) cells secrete some soluble factors which may affect the differentiation potential of adult stem cells toward different lineages. In the present study, we evaluated neural differentiation of mouse adipose tissue-derived stem cells (ADSCs) following coculture with ES cells. For this purpose, ADSCs were induced in a medium supplemented with a synthetic serum replacement and various concentrations of retinoic acid (RA). ⋯ Treatment of the cocultured ADSCs with RA diminished the expression of neural maturation markers. Coculture with the ES cells efficiently improves neural differentiation of the ADSCs. Non-contact coculture with the ES cells may be used as an efficient strategy to improve differentiation potential of adult stem cells for developmental studies and regenerative medicine.
-
Intracerebral hemorrhage (ICH) is the least treatable form of stroke and is associated with the worst prognosis. In up to 40% of cases, ICH is further complicated by intraventricular hemorrhage (IVH), which predisposes to hydrocephalus, and increases case-mortality to 80%. However, IVH is not present in widely used preclinical models of ICH. ⋯ Presence of hydrocephalus was detected in most of the animals, most clearly in the 200μL and 250μL groups, both being statistically different from the 100μL group at all-time points, with tendency to worsen during the whole follow-up period. Most deteriorating neurological and behavioral outcomes as well as the highest mortality rates were detected in groups injected with 200μL and 250μL of autologous blood, 40% and 70%, respectively. These volumes were most similar to the clinical scenario of combined ICH and IVH, demonstrating that this novel rat model is a promising starting point for future ICH+IVH research.