Neuroscience
-
About half of the human brain is white matter, characterized by axons covered in myelin, which facilitates the high speed of nerve signals from one brain area to another. At the time of myelination, the oligodendrocytes that synthesize myelin require a large amount of energy for this task. Conditions that deprive the tissue of energy can kill the oligodendrocytes. ⋯ In addition, lactate carries signals as a volume transmitter. Myelin thus seems to serve as a provider of substrates and signals for axons, and not as a mere insulator. We review the fluxes of lactate in white matter and their significance in brain function.
-
Oligodendrocytes and the myelin they produce are a remarkable vertebrate specialization that enables rapid and efficient nerve conduction within the central nervous system. The generation of myelin during development involves a finely-tuned pathway of oligodendrocyte precursor specification, proliferation and migration followed by differentiation and the subsequent myelination of appropriate axons. ⋯ Many of these regulatory mechanisms have recurring roles in regulating several transitions during oligodendrocyte development, highlighting their importance. It is also highly likely that many of these developmental mechanisms will also be involved in myelin repair in human neurological disease.
-
Myelination by oligodendrocytes is a highly specialized process that relies on intimate interactions between the axon and the oligodendrocytes. Astrocytes have an important part in facilitating myelination in the CNS, however, comparatively less is known about how they affect myelination. This review therefore summarizes the literature and explores lingering questions surrounding differences between white matter and gray matter astrocytes, how astrocytes support myelination, how their dysfunction in pathological states contributes to myelin pathologies and how astrocytes may facilitate remyelination. ⋯ Dysfunctional astrocytes aberrantly affect oligodendrocytes, as exemplified by a number of leukodystrophies in which astrocytic pathology is known as the direct cause of myelin pathology. Conversely, in primary demyelinating diseases, such as multiple sclerosis, astrocytes may facilitate remyelination. We suggest that specific manipulation of astrocytes could help prevent myelin pathologies and successfully restore myelin sheaths after demyelination.
-
There are two ways to picture white matter: as a grid of electrical wires or a network of roads. The first metaphor captures the classical function of an axon as conductor of action potentials (and information) from one brain region to another. The second one points to the important role of axons in a bi-directional transport of biological molecules and organelles between the cell body and synapse. ⋯ We then provide examples of key features of maturation and aging of white matter, as well as some of the common abnormalities observed in neurodevelopmental and neurodegenerative disorders. Next, we review work that motivated our focus on axonal diameter, and explain the relationships between transport and cytoskeleton within the axon. We will conclude by describing molecular machinery of axonal transport and genes that may contribute to inter-individual variations in axonal diameter and axonal transport.
-
The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. ⋯ We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination.