Neuroscience
-
When performing self-paced movements in a fatigued state, internal models can predict the mechanical effects of muscle fatigue. Yet, it is unclear if this is still true when movements are submitted to additional constraints. The purpose of the present study was to investigate the Central Nervous System's (CNS) capacity to integrate fatigue signals into forward models' prediction processes when the movement to perform is unpredictable and temporally constrained. ⋯ While the fatigue protocol resulted in significant alterations of arm flexion peak accelerations, APAs were not modified post-fatigue as compared to control trials. It is proposed that with unpredictable and temporally constrained movements, the CNS cannot incorporate fatigue signals in internal models' prediction processes to reweight the motor information contained in the efference copy. It is also suggested that APA implementation is based on predictive processes occurring in internal models located upstream from M1.
-
The process of glutamate release, activity, and reuptake involves the astrocyte, the presynaptic and postsynaptic neurons. Glutamate is released into the synapse and may occupy and activate receptors on both neurons and astrocytes. Glutamate is rapidly removed from the synapse by a family of plasma membrane excitatory amino acid transporters (EAATs), also localized to neurons and astrocytes. ⋯ Expression of EAAT1 protein on neurons may be due to the hypoxia associated with the postmortem interval, and requires further confirmation. The localization of EAATs on the astrocytic plasma membrane and adjacent to excitatory synapses is consistent with the function of facilitating glutamate reuptake and limiting glutamate spillover. Establishment that EAAT1 and EAAT2 can be measured at the EM level in human postmortem tissues will permit testing of hypotheses related to these molecules in diseases lacking analogous animal models.
-
Cocaine- and amphetamine-regulated transcript (CART) is a neuropeptide that plays neuroprotective roles in cerebral ischemia and reperfusion (I/R) injury in animal models or oxygen and glucose deprivation (OGD) in cultured neurons. Recent data suggest that intranasal CART treatment facilitates neuroregeneration in stroke brain. However, little is known about the effects of post-treatment with CART during the neuronal recovery after OGD and reoxygenation in cultured primary cortical neurons. ⋯ This effect depends on pleiotrophin (PTN) as siRNA-mediated PTN knockdown totally abolished the increase in CART-stimulated GAP43 protein levels. In summary, our findings demonstrate that CART repairs the neuronal injury after OGD by facilitating neurite outgrowth through PTN-dependent pathway. The role for CART in neurite outgrowth makes it a new potential therapeutic agent for the treatment of neurodegenerative diseases.
-
Melatonin, an indoleamine hormone secreted into circulation at night primarily by the brain's pineal gland, has been shown to have a wide variety of actions on the development and physiology of neurons in the CNS. Acting via two G-protein-coupled membrane receptors (MT1 and MT2), melatonin modulates neurogenesis, synaptic functions, neuronal cytoskeleton and gene expression. In the present studies, we sought to characterize the behavior and neuronal biology of transgenic mice lacking both of these melatonin receptors as a way to understand the hormone's receptor versus non-receptor-mediated actions in CNS-dependent activities, such as learning and memory, anxiety, general motor performance and circadian rhythmicity. ⋯ Electrophysiological measures in hippocampal slices revealed a clear enhancement of long-term potentiation in mice lacking melatonin receptors with no significant differences in paired-pulse facilitation. Quantitative analysis of brain protein expression levels of phosphoCREB and phosphoERK1/2 and key markers of synaptic activity (synapsin, glutamate receptor 1, spinophilin, and glutamic acid decarboxylase 1) revealed significant differences between the double-knockout and wild-type animals, consistent with the behavioral findings. Thus, genetic deletion of melatonin receptors produces mice with enhanced cognitive and motor performance, supporting the view that these receptors play an important role in neurobehavioral development.
-
Hydrocephalus is caused by the accumulation of cerebrospinal fluid (CSF) in the cerebral ventricular system which results in an enlargement of the cranium due to increased intraventricular pressure. The increase in pressure within the brain typically results in sloughing of ciliated ependymal cells, loss of cortical gray matter, and increased gliosis. Congenital hydrocephalus is associated with several syndromes including primary ciliary dyskinesia (PCD), a rare, genetically heterogeneous, pediatric syndrome that results from defects in motile cilia and flagella. ⋯ Alterations in astrocytosis, microglial activation, myelination, and the neuronal population were identified and are generally more severe on the C57BL/6J background. Analysis of ependymal ciliary clearance ex vivo and CSF flow in vivo demonstrate a physiological defect in nm1054 and bgh mice on both genetic backgrounds, indicating that abnormal cilia-driven flow is not the sole determinant of the severity of hydrocephalus in these models. These results suggest that genetic modifiers play an important role in susceptibility to severe PCD-associated hydrocephalus.