Neuroscience
-
Vision is important for locomotion in complex environments. How it is used to guide stepping is not well understood. We used an eye search coil technique combined with an active marker-based head recording system to characterize the gaze patterns of cats walking over terrains of different complexity: (1) on a flat surface in the dark when no visual information was available, (2) on the flat surface in light when visual information was available but not required for successful walking, (3) along the highly structured but regular and familiar surface of a horizontal ladder, a task for which visual guidance of stepping was required, and (4) along a pathway cluttered with many small stones, an irregularly structured surface that was new each day. ⋯ We call this behavior "gaze stepping". Each gaze shift took gaze to a site approximately 75-80cm in front of the cat, which the cat reached in 0.7-1.2s and 1.1-1.6 strides. Constant gaze occupied only 5-21% of the time cats spent looking at the walking surface.
-
During the early stages of development, the olfactory system plays a vital role in the survival of altricial mammals. One remarkable example is the Oryctolagus cuniculus, whose mother-young interaction greatly depends on the 2-methylbut-2-enal (2MB2) pheromone that triggers nipple search and grasping behaviors. Olfactory stimulation with 2MB2 regulates the expression of the core body temperature and locomotor activity rhythms in rabbit pups, indicating the modulation of the circadian system by this volatile cue. ⋯ In contrast, the clock proteins were essentially modulated by 2MB2 at ZT00 and at ZT06 in both structures. In addition, the PER1 and CRY1 proteins exhibited differential responses to stimulation in the three layers of the MOB. For the first time, we report a modulatory and time-dependent effect of the mammary pheromone 2MB2 on the expression of the core clock proteins in the SCN and in the MOB in rabbits during pre-visual stages of development.
-
Comparative Study
Differential cavitation, angiogenesis and wound-healing responses in injured mouse and rat spinal cords.
The vascular disruption, blood vessel loss and cavitation that occur at spinal cord injury (SCI) epicenters in mice and rats are different, but few studies have compared the acute SCI response in the two species. This is of interest since key elements of the rat SCI response are shared with humans. In this study, we investigated acute SCI responses and characterized changes in pro- and anti-angiogenic factors and matrix deposition in both species. ⋯ We conclude that the more robust angiogenesis/wound-healing response in the mouse attenuates post-injury wound cavitation. Although the spinal cord functions that were monitored post-injury were similarly affected in both species, we suggest that the quality of the angiogenesis/wound-healing response together with the diminished lesion size seen after mouse SCI may protect against secondary axon damage and create an environment more conducive to axon sprouting/regeneration. These results suggest the potential therapeutic utility of manipulating the angiogenic response after human SCI.
-
Groove-based rhythm is a basic and much appreciated feature of Western popular music. It is commonly associated with dance, movement and pleasure and is characterized by the repetition of a basic rhythmic pattern. At various points in the musical course, drum breaks occur, representing a change compared to the repeated pattern of the groove. ⋯ Both the RIFG and STG have been associated with structural irregularity and increase in musical-syntactical complexity in several earlier studies, whereas the left cerebellum is known to play a part in timing. Together these areas may be recruited in the breaks due to a prediction error process whereby the internal model is being updated. This concurs with previous research suggesting a network for predictive feed-forward control that comprises the cerebellum and the cortical areas that were activated in the breaks.
-
Enteric viscerofugal neurons are mechanosensory interneurons that form the afferent limb of intestino-intestinal reflexes involving prevertebral sympathetic neurons. Fast synaptic inputs to viscerofugal neurons arise from other enteric neurons, but their sources are unknown. We aimed to describe the origins of synaptic inputs to viscerofugal neurons by mapping the locations of their cell bodies within the myenteric plexus. ⋯ The cellular sources of synaptic inputs to viscerofugal neurons were located both orally and aborally (19 oral, 19 aboral), but the amplitude of oral inputs was consistently greater than aboral inputs (13.1 ± 4.3 mV vs. 10.1 ± 4.8 mV, respectively, p<0.05, paired t-test, n=6). Most impaled viscerofugal neurons were nitric oxide synthase (NOS) immunoreactive (20/27 cells tested). Thus, the synaptic connections onto viscerofugal neurons within the myenteric plexus suggest that multiple enteric neural pathways feed into intestino-intestinal reflexes, involving sympathetic prevertebral ganglia.