Neuroscience
-
Stress, a common if unpredictable life event, can have pronounced effects on physiology and behavior. Individuals show wide variation in stress susceptibility and resilience, which are only partially explained by variations in coding genes. Developmental programing of the hypothalamic-pituitary-adrenal stress axis provides part of the explanation for this variance. ⋯ Stress and the stress axis interacts bi-directionally with epigenetic marks within the brain. It is now clear that exposure to stress, particularly in early life, has both acute and lasting effects on these marks. They in turn influence cognitive function and behavior, as well as the risk for suicide and psychiatric disorders across the lifespan and, in some cases, unto future generations.
-
Cajal-Retzius cells (CRc) represent a mostly transient neuronal cell type localized in the uppermost layer of the developing neocortex. The observation that CRc are a major source of the extracellular matrix protein reelin, which is essential for the laminar development of the cerebral cortex, attracted the interest in this unique cell type. In this review we will (i) describe the morphological and molecular properties of neocortical CRc, with a special emphasize on the question which markers can be used to identify CRc, (ii) summarize reports that identified the different developmental origins of CRc, (iii) discuss the fate of CRc, including recent evidence for apoptotic cell death and a possible persistence of some CRc, (iv) provide a detailed description of the electrical membrane properties and transmitter receptors of CRc, and (v) address the role of CRc in early neuronal circuits and cortical development. Finally, we speculate whether CRc may provide a link between early network activity and the structural maturation of neocortical circuits.
-
Successful emotion regulation is a fundamental prerequisite for well-being and dysregulation may lead to psychopathology. The ability to inhibit spontaneous emotions while behaving in accordance with desired goals is an important dimension of emotion regulation and can be measured using emotional conflict resolution tasks. Few studies have investigated the gray matter correlates underlying successful emotional conflict resolution at the whole-brain level. ⋯ We found successful emotional conflict resolution was associated with increased regional gray matter density in widely distributed brain regions. These regions included the dorsal anterior cingulate/dorsal medial prefrontal cortex, ventral medial prefrontal cortex, supplementary motor area, amygdala, ventral striatum, precuneus, posterior cingulate cortex, inferior parietal lobule, superior temporal gyrus and fusiform face area. Together, our results indicate that individual differences in emotional conflict resolution ability may be attributed to regional structural differences across widely distributed brain regions.
-
Primary auditory neurons (ANs) in the mammalian cochlea play a critical role in hearing as they transmit auditory information in the form of electrical signals from mechanosensory cochlear hair cells in the inner ear to the brainstem. Their progressive degeneration is associated with disease conditions, excessive noise exposure and aging. Replacement of ANs, which lack the ability to regenerate spontaneously, would have a significant impact on research and advancement in cochlear implants in addition to the amelioration of hearing impairment. ⋯ Moreover, induced neurons showed typical properties of neuron morphology, gene expression and electrophysiology. Our data indicate that Ascl1 alone or Ascl1 and NeuroD1 is sufficient to reprogram cochlear non-sensory epithelial cells into functional neurons. Generation of neurons from non-neural cells in the cochlea is an important step for the regeneration of ANs in the mature mammalian cochlea.
-
Balance control during upright standing is accompanied by an increased amplitude of motor-evoked potentials (MEP) induced by transcranial magnetic stimulation and a decreased amplitude of the Hoffmann (H) reflex in the soleus muscle. Nonetheless, whether these observations reflect reciprocal adjustments between corticospinal and group I afferents pathways during upright standing remains unknown. To further investigate this question, cathodal transcranial direct current stimulation (c-tDCS) applied over the motor cortex and vibration of Achilles tendons were used to modify the excitability of corticospinal and group I afferent pathways, respectively. ⋯ Regardless of the conditions (c-tDCS and tendon vibration), no significant correlation was observed between changes in MEP and H-reflex amplitudes. The results failed to demonstrate close reciprocal changes in soleus MEP and H-reflex amplitudes during upright standing. These original findings suggest independent adjustments in corticospinal and group I afferents pathways during upright standing.