Neuroscience
-
The complement of mechanisms underlying tau pathology in neurodegenerative disorders has yet to be elucidated. Among these mechanisms, abnormal tau phosphorylation has received the most attention because neurofibrillary tangles present in Alzheimer's disease (AD) and related disorders known as tauopathies are composed of hyperphosphorylated forms of this microtubule-associated protein. More recently, we showed that calpain-mediated cleavage leading to the generation of the 17kDa tau₄₅₋₂₃₀ fragment is a conserved mechanism in these diseases. ⋯ Furthermore, functional abnormalities were detected in the transgenic mice using Morris Water Maze and fear conditioning tests. These results suggest that the accumulation of tau₄₅₋₂₃₀ is responsible, at least in part, for neuronal degeneration and some behavioral changes in AD and other tauopathies. Collectively, these data provide the first direct evidence of the toxic effects of a tau fragment biologically produced in the context of these diseases in vertebrate neurons that develop in situ.
-
Melatonin, a neurohormone secreted mainly by the pineal gland, has a variety of physiological functions and neuroprotective effects. Previous studies have shown that melatonin could stimulate the proliferation of neural stem/progenitor cells (NS/PCs). Recent studies reported that the activities of mitogen-activated protein kinase (MAPK) of neural stem cells (NSCs) changed in response to the proliferative effect of melatonin. ⋯ The present results showed that melatonin could induce NS/PCs to proliferate by increasing phosphorylation of ERK1/2 and c-Raf through melatonin receptor. These results provide further evidence for a role of melatonin in promoting neurogenesis, adding to the remarkably pleiotropic nature of this neurohormone. This intrinsic modulator deserves further investigation to better understand its physiological and therapeutic implication.
-
Aging is associated with exacerbated brain injury after ischemic stroke. Herein, we explored the possible mechanisms underlying the age-associated exacerbated brain injury after ischemic stroke and determined whether therapeutic intervention with anesthetic post-conditioning would provide neuroprotection in aged rats. Male Fisher 344 rats (young, 4 months; aged, 24 months) underwent 2h of middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion, with or without sevoflurane post-conditioning for 15 min immediately at the onset of reperfusion. ⋯ In contrast, sevoflurane failed to enhance Bcl-2 expression but decreased Bax expression in aged rats. These findings suggest that aging-associated reduction in basal Bcl-2 expression in the brain contributes to increased neuronal injury by enhancing cell apoptosis after ischemic stroke. Sevoflurane post-conditioning failed to provide neuroprotection in aged rats, probably due to its inability to increase Bcl-2 levels and prevent apoptosis in the brain.
-
The latest advancements in neurobiological research provide increasing evidence that inflammatory and neurodegenerative pathways play an important role in depression. According to the cytokine hypothesis, depression could be due to the increased production of pro-inflammatory cytokines by microglia activation. Thus, using the BV-2 microglial cell line, the aim of the present study was to investigate whether fluoxetine (FLX) or acetylsalicylic acid (ASA) could inhibit this microglia activation and could achieve better results in combination. ⋯ Moreover, FLX could inhibit phosphorylation of nuclear factor-κB (NF-κB) and phosphorylation of p38 mitogen-activated protein kinase (MAPK), and the combined use with ASA could enhance these effects. Notably, the adjunctive agent ASA could also inhibit phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2). Taken together, our results suggest that FLX may have some anti-inflammatory effects by modulating microglia activation and that ASA served as an effective adjunctive agent by enhancing these therapeutic effects.
-
Gap junctions facilitate intercellular communication and are important in brain development. Connexins (Cx) comprise a transmembrane protein family that forms gap junctions. Cx-32 is expressed in oligodendrocytes and neurons, Cx-36 in neurons, and Cx-43 in astrocytes. ⋯ Cx-32 was higher in the cerebellum than cerebral cortex and spinal cord, Cx-36 higher in the spinal cord than cerebellum, and Cx-43 higher in the cerebellum and spinal cord than cerebral cortex during basal conditions. In conclusion, maternal glucocorticoid therapy increases specific Cx, responses to different maternal courses vary among Cx and brain regions, and Cx expression differs among brain regions under basal conditions. Maternal treatment with glucocorticoids differentially modulates Cx in the fetal brain.