Neuroscience
-
Amphetamine-type psychostimulants (ATS) are used worldwide by millions of patients for several psychiatric disorders. Amphetamine (AMPH) and "ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) are common drugs of abuse. The impact of chronic ATS exposure to neurons and brain aging is still undisclosed. ⋯ At 8 DIV, ATS promoted a significant change in the percentage of neurons and astroglia present in culture, promoting a global decrease in the number of both cells. Importantly, concentrations equal to or below 10 μM of either drug did not promote neuronal death or oxidative stress. Our paradigm of neuronal cultures long-term exposure to low micromolar concentrations of ATS closely reproduces the in vivo scenario, being valuable to study the chronic impact of ATS.
-
In the mammalian cerebellum, deep cerebellar nuclear (DCN) cells convey all information from cortical Purkinje cells (PCs) to premotor nuclei and other brain regions. However, how DCN cells integrate inhibitory input from PCs with excitatory inputs from other sources has been difficult to assess, in part due to the large spatial separation between cortical PCs and their target cells in the nuclei. To circumvent this problem we have used a Cre-mediated genetic approach to generate mice in which channelrhodopsin-2 (ChR2), fused with a fluorescent reporter, is selectively expressed by GABAergic neurons, including PCs. ⋯ If bursts of such brief light pulses are delivered, a fixed pattern of bistable bursting emerges. If these pulses are delivered continuously to a spontaneously bistable cell, the immediate response to such photostimulation is inhibitory in the cell's depolarized state and excitatory when the membrane has repolarized; a less regular burst pattern then persists after stimulation has been terminated. These results indicate that the spiking activity of DCN cells can be bidirectionally modulated by the optically activated synaptic inhibition of cortical PCs.
-
The normal function of GABAA receptor-mediated inhibition is governed by several factors, including release of GABA, subunit composition and density of the receptors and in particular by the appropriate ionic gradient. In the human epileptogenic neocortex an impaired chloride (Cl(-)) gradient has been proposed, due to decreases of potassium-coupled chloride transport (KCC2) and voltage-gated Cl(-) channels (ClC). Regarding sodium- and potassium-coupled Cl(-) transport (NKCC1) both up- and downregulations have been proposed. ⋯ In human neurons, DIDS increased τrec from 23.3 to 50.7s (n=7), corresponding to a DIDS-sensitive rate of 0.0200s(-1). These data suggest a greatly reduced KCC2-mediated transport rate in most of the human neurons. The two subgroups observed in human tissue indicate a considerable variability of Cl(-) transport within a given tissue from almost normal to greatly impeded, predominated by a decline of KCC2 whereas AE is unaltered.
-
Birdsong offers a unique model system to understand how a developing brain - once given a set of purely acoustic targets - teaches itself the vocal-tract gestures necessary to imitate those sounds. Like human infants, to juvenile male zebra finches (Taeniopygia guttata) falls the burden of initiating the vocal-motor learning of adult sounds. ⋯ Distinct forebrain pathways for structured (theme) and unstructured (variation) singing not only raise new questions about mechanisms of sensory-motor integration, but also provide a fascinating new research opportunity. A cortical locus for a motor memory of the learned song is now firmly established, meaning that anatomical, physiological, and computational approaches are poised to reveal the neural mechanisms used by the brain to compose the songs of birds.
-
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsies in adults. It is often initiated by an insult or brain injury which triggers a series of alterations which ultimately lead to seizures (epilepsy). ⋯ BBB changes have been observed in brain tissue of people with epilepsy as well as in experimental models at the structural, cellular and molecular level that could explain its role in the development and progression of epilepsy (epileptogenesis) as well as the development of drug resistance. Here, we will discuss the role of the BBB in TLE and drug resistance and summarize potential new therapies that may restore normal BBB function in order to put a brake on epileptogenesis and/or to improve drug treatment.