Neuroscience
-
Despite its initial treatment as a nuisance variable, the placebo effect is now recognized as a powerful determinant of health across many different diseases and encounters. This is in light of some remarkable findings ranging from demonstrations that the placebo effect significantly modulates the response to active treatments in conditions such as pain, anxiety, Parkinson's disease, and some surgical procedures. Here, we review pioneering studies and recent advances in behavioral, neurobiological, and genetic influences on the placebo effect. ⋯ We discuss neuroimaging studies that have identified key brain regions and modulatory mechanisms underlying placebo effects using well-established behavioral paradigms. Finally, we present a synthesis of recent genetics studies on the placebo effect, highlighting a promising link between genetic variants in the dopamine, opioid, serotonin, and endocannabinoid pathways and placebo responsiveness. Greater understanding of the behavioral, neurobiological, and genetic influences on the placebo effect is critical for evaluating medical interventions and may allow health professionals to tailor and personalize interventions in order to maximize treatment outcomes in clinical settings.
-
For several years Amyloid-beta peptide (Aβ) has been considered the main pathogenetic factor of Alzheimer's disease (AD). According to the so called Amyloid Cascade Hypothesis the increase of Aβ triggers a series of events leading to synaptic dysfunction and memory loss as well as to the structural brain damage in the later stage of the disease. However, several evidences suggest that this hypothesis is not sufficient to explain AD pathogenesis, especially considering that most of the clinical trials aimed to decrease Aβ levels have been unsuccessful. ⋯ According to this vision, when Aβ cannot exert its physiological function a negative feedback mechanism would induce a compensatory increase of its production leading to an abnormal accumulation that reduces α7-nAchR function, leading to synaptic dysfunction and memory loss. In this perspective, the indiscriminate Aβ removal might worsen neuronal homeostasis, causing a further impoverishment of learning and memory. Even if further studies are needed to better understand and validate these mechanisms, we believe that to deepen the role of Aβ in physiological conditions might represent the keystone to elucidate important aspects of AD pathogenesis.
-
Macrophages in the injured spinal cord arise from resident microglia and from infiltrating peripheral myeloid cells. Microglia respond within minutes after central nervous system (CNS) injury and along with other CNS cells signal the influx of their peripheral counterpart. Although some of the functions they carry out are similar, they appear to be specialized to perform particular roles after CNS injury. ⋯ They can change from pro-inflammatory, cytotoxic cells to anti-inflammatory, pro-repair phenotypes. The microenvironment of the injured CNS importantly influences macrophage plasticity. This review discusses the phagocytosis and cytokine-mediated effects on macrophage plasticity in the context of spinal cord injury.
-
People with autism spectrum disorders (ASDs) also have poorer fundamental motor skills. The development of postural control underlies both social and motor skills. All three elements are facilitated by the active use of visual information. This study compares how adults with ASD and typically developed adults (TDAs) respond to a postural illusion induced using neck vibration. Adults with ASD unlike the TDA, were not expected to correct the illusion using vision. ⋯ Our findings indicated the adults with ASD did not use visual information to control standing posture. In light of existing evidence that vision-for-perception is processed typically in ASD, our findings support a specific deficit in vision-for-action. These findings may explain why individuals with ASD experience difficulties with both social and motor skills since both require vision-for-action. Further research needs to investigate the division of these visual learning pathways in order to provide more specific intervention opportunities in ASD.
-
There are profound, yet incompletely understood, sex differences in the neurogenic regulation of blood pressure. Both corticotropin signaling and glutamate receptor plasticity, which differ between males and females, are known to play important roles in the neural regulation of blood pressure. However, the relationship between hypertension and glutamate plasticity in corticotropin-releasing factor (CRF)-receptive neurons in brain cardiovascular regulatory areas, including the rostral ventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), is not understood. ⋯ Unlike the RVLM, AngII-mediated hypertension had no effect on GluN1 localization in CRF1-EGFP dendrites in the PVN of either male or female mice. These studies provide an anatomical mechanism for sex-differences in the convergent modulation of RVLM catecholaminergic neurons by CRF and glutamate. Moreover, these results suggest that sexual dimorphism in AngII-induced hypertension is reflected by NMDA receptor trafficking in presumptive sympathoexcitatory neurons in the RVLM.