Neuroscience
-
The development of a hyperexcitable neuronal network is thought to be a critical event in epilepsy. Thrombospondins (TSPs) regulate synaptogenesis by binding the neuronal α2δ subunit of the voltage-gated calcium channel. TSPs regulate synapse formation during development and in the mature brain following injury. ⋯ Here we report similar findings, TSP1, and TSP1/2 KO mice have low levels of CACNA2D2 mRNA expression and α2δ-1/2 receptor level in the cortex, and are more susceptible to seizures. CACNA2D2 mutations in mice and humans can cause epilepsy. Our data suggest TSP1 in particular may control CACNA2D2 levels and could be a modifier of seizure susceptibility.
-
Adolescence is often portrayed as a period of enhanced sensitivity to reward, with long-lasting neurobiological changes upon reward exposure. However, we previously found that time-dependent increases in cue-induced sucrose seeking were more pronounced in rats trained to self-administer sucrose as adults than as adolescents. In addition, adult, but not adolescent sucrose self-administration led to a decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-Methyl-D-aspartate (AMPA/NMDA) ratio in the nucleus accumbens core, suggesting that long-lasting changes in glutamatergic transmission may affect adult processing of natural rewards. ⋯ On abstinence day 22, local injection of the mGluR2/3 agonist LY379268 increased cue-induced sucrose seeking only in adult rats, and had no effect in adolescents. Local injections of the mGluR2/3 antagonist MPPG had no effect on sucrose seeking in adult rats. These data suggest an important developmental difference in the neural substrates of natural reward, specifically a difference in glutamatergic transmission in the accumbens in cue-induced responding for sucrose between adolescent and adult rats.
-
The role of microRNAs (miRNAs) in lysosome-mediated neuronal death and survival following ischemic stroke remains unknown. Herein, using miRNA and mRNA gene expression profiling microarrays, we identified the differentially expressed 24 miRNAs and 494 genes in the cortical peri-infarct area, respectively. Integrating the miRNA targets and mRNA expression profiles, we found 47 genes of miRNA targets, including lysosomal-associated membrane protein 2 (LAMP2), Hexb, Bcl2, etc. ⋯ In addition, miR-207 mimics could reduce the number of cellular lysosome and autophagosome, whereas increase the number of autophagic vacuoles, indicating miR-207 might affect the latter part of lysosomal-autophagy pathway and mitochondria-induced apoptosis. These results suggested that miR-207 and miR-352 were involved in lysosomal pathway for mediating ischemic injury and spontaneous recovery. MiR-207 mimics as potential target drugs could protect against autophagic cell death after ischemic stroke.
-
Prenatal morphine exposure throughout pregnancy can induce a series of neurobehavioral and neurochemical disturbances by affecting central nervous system development. This study was designed to investigate the effects of an enriched environment on behavioral deficits and changes in hippocampal brain-derived neurotrophic factor (BDNF) levels induced by prenatal morphine in rats. On pregnancy days 11-18, female Wistar rats were randomly injected twice daily with saline or morphine. ⋯ Prenatal morphine exposure reduced hippocampal BDNF levels, but enriched environment significantly increased BDNF levels in both saline- and morphine-exposed groups. Our results demonstrate that exposure to an enriched environment alleviates behavioral deficits induced by prenatal morphine exposure and up-regulates the decreased levels of BDNF. BDNF may contribute to the beneficial effects of an enriched environment on prenatal morphine-exposed to rats.
-
The activation of renin angiotensin system is involved in multiple pathological processes. The neuroprotective effect of propofol has been reported. We hypothesized that propofol may attenuate Angiotensin II (Ang II)-induced apoptosis in mouse hippocampal HT22 cells and aimed to identify the underlying mechanisms. ⋯ Ang II via AT1R induced oxidative stress and apoptosis in hippocampal HT22 cells, and the neuroprotective anti-apoptotic effect of propofol was mediated through inhibiting oxidative stress.