Neuroscience
-
Two event-related potential (ERP) experiments were conducted to investigate whether Cantonese lexical tones are processed with general auditory perception mechanisms and/or a special speech module. Two tonal features (f0 direction and f0 height deviation) were manipulated to reflect acoustic processing, and the contrast between syllables and hums was used to reveal the involvement of a speech module. Experiment 1 adopted a passive oddball paradigm to study a relatively early stage of tonal processing. ⋯ Moreover, detecting tonal deviants of syllables elicited N1 and P2 that were not found in hum detection. Together, these findings suggest that the processing of lexical tone relies on both acoustic and linguistic processes from the early stage. Another noteworthy finding is the absence of brain lateralization in both experiments, which challenges the use of a lateralization pattern as evidence for processing lexical tones through a special speech module.
-
Extremely mild hypothermia to 36.0 °C is not thought to appreciably differ clinically from 37.0 °C. However, it is possible that 36.0 °C stimulates highly sensitive hypothermic signaling mechanism(s) and alters biochemistry. To the best of our knowledge, no such ultra-sensitive pathway/mechanisms have been described. ⋯ Neurons cultured at 36 °C also had increased global protein synthesis (GPS). Finally, we found that melatonin or fibroblast growth factor 21 (FGF21) augmented RBM3 upregulation in young neurons cooled to 36 °C. Our results show that a 1 °C reduction in temperature can induce pleiotropic biochemical changes by upregulating GPS in neurons which may be mediated by RBM3 and that this process can be pharmacologically mimicked and enhanced with melatonin or FGF21.
-
A single session of skill or strength training can modulate the primary motor cortex (M1), which manifests as increased corticospinal excitability (CSE) and decreased short-latency intra-cortical inhibition (SICI). We tested the hypothesis that both skill and strength training can propagate the neural mechanisms mediating cross-transfer and modulate the ipsilateral M1 (iM1). ⋯ Both skill training and MPST facilitated an increase in CSE and released SICI in iM1 and cM1 compared to baseline. Our results suggest that synchronizing to an auditory or a visual cue promotes neural adaptations within the iM1, which is thought to mediate cross transfer.
-
This study tightly controlled seizure duration and severity during status epilepticus (SE) in postnatal day 10 (P10) rats, in order to isolate hyperthermia as the main variable and to study its consequences. Body temperature was maintained at 39 ± 1 °C in hyperthermic SE rats (HT+SE) or at 35 ± 1 °C in normothermic SE animals (NT+SE) during 30 min of SE, which was induced by lithium-pilocarpine (3 mEq/kg, 60 mg/kg) and terminated by diazepam and cooling to NT. All video/EEG measures of SE severity were similar between HT+SE and NT+SE pups. ⋯ Both HT+SE and NT+SE animals developed electrographic SRS (83% vs. 55%), but SRS frequency and severity were higher in hyperthermic animals (12.5 ± 3.5 vs. 4.2 ± 2.0 SRS/day). The density of hilar neurons was lower, thickness of the amygdala and perirhinal cortex was reduced, and lateral ventricles were enlarged in HT+SE over NT+SE littermates and HT/NT controls. In this model, hyperthermia greatly increased the epileptogenicity of SE and its neuropathological sequelae.
-
Electrophysiological studies demonstrate that the neural coding of pitch is modulated by language experience and the linguistic relevance of the auditory input; both rightward and leftward asymmetries have been observed in the hemispheric specialization for pitch. In music, pitch is encoded using two primary features: contour (patterns of rises and falls) and interval (frequency separation between tones) cues. Recent evoked potential studies demonstrate that these "global" (contour) and "local" (interval) aspects of pitch are processed automatically (but bilaterally) in trained musicians. ⋯ Chinese speakers showed differential pitch encoding between hemispheres not observed in English listeners; Chinese MMNs revealed a rightward bias for contour processing but a leftward hemispheric laterality for interval processing. In contrast, no asymmetries were observed in the English group. Collectively, our findings suggest tone-language experience sensitizes auditory brain mechanisms for the detection of subtle global/local pitch changes in the ongoing auditory stream and exaggerates functional asymmetries in pitch processing between cerebral hemispheres.