Neuroscience
-
The experience of pain is a highly complex and personal experience, characterized by tremendous inter-individual variability. The purpose of this study was to use functional magnetic resonance imaging (fMRI) to characterize responses in the brainstem and spinal cord to the same heat stimulus in healthy participants, to further our understanding of individual differences in pain perception. Responses to noxious heat stimuli at 49°C were investigated in 20 healthy individuals by means of fMRI of the brainstem and spinal cord, at 3 Tesla, and were compared with brain fMRI and quantitative sensory testing. ⋯ Correlations between pain scores and BOLD responses are also demonstrated in the spinal cord dorsal horn, locus coeruleus, and thalamus. SEM results demonstrate the network of brainstem and spinal cord regions that contribute to the pain response, and reveal differences related to individual pain sensitivity. The results of this study are consistent with the conclusion that individual differences in pain perception in healthy participants are a consequence of differences in descending modulation of spinal nociceptive processes from brainstem regions.
-
Dorsoventral patterning and epidermal growth factor receptor (EGFR) signaling genes are essential for determining neural identity and differentiation of the Drosophila nervous system. Their role in glial cell development in the Drosophila nervous system is not clearly established. Our study demonstrated that the dorsoventral patterning genes, vnd, ind, and msh, are intrinsically essential for the proper expression of a master glial cell regulator, gcm, and a differentiation gene, repo, in the lateral glia. ⋯ These results indicate that the dorsoventral patterning and EGFR signaling genes are essential for identity determination and differentiation of the lateral glia by regulating proper expression of gcm and repo in the lateral glia from the early glial development. In contrast, overexpression of vnd, msh, spi, and Egfr genes repressed the expression of Repo in the ventral neuroectoderm, indicating that maintenance of correct columnar identity along the dorsoventral axis by proper expression of these genes is essential for restrictive formation of glial precursor cells in the lateral neuroectoderm. Therefore, the dorsoventral patterning and EGFR signaling genes play essential roles in correct identity determination and differentiation of lateral glia in the Drosophila nervous system.
-
Parkinson's disease (PD) patients not only exhibit motor impairments, but also characteristic deficits in cognitive and affective functions. Such functions have consistently been associated with the medial prefrontal cortex (mPFC). To determine whether there is an interaction between the midbrain dopamine system (MDS) and the mPFC underlying the cognitive and emotional deficits seen in rats, we administered a disconnection procedure of these structures by applying lesions to the mPFC (N-methyl-d-aspartic acid (NMDA)) and the medial forebrain bundle (6-hydroxydopamine (6-OHDA)) either in the same or opposite hemispheres. ⋯ Taken together, these experiments provide evidence for an interaction of the MDS and the mPFC in the control of cognitive and affective processes known to be impaired in PD and point toward a prominent involvement of the serotonergic system. A disconnection of the mPFC and the MDS had promnestic, antidepressant- and anxiolytic-like behavioral effects. These findings may impact therapeutic approaches in the treatment of cognitive and neuropsychiatric symptoms seen in PD.
-
For several years Amyloid-beta peptide (Aβ) has been considered the main pathogenetic factor of Alzheimer's disease (AD). According to the so called Amyloid Cascade Hypothesis the increase of Aβ triggers a series of events leading to synaptic dysfunction and memory loss as well as to the structural brain damage in the later stage of the disease. However, several evidences suggest that this hypothesis is not sufficient to explain AD pathogenesis, especially considering that most of the clinical trials aimed to decrease Aβ levels have been unsuccessful. ⋯ According to this vision, when Aβ cannot exert its physiological function a negative feedback mechanism would induce a compensatory increase of its production leading to an abnormal accumulation that reduces α7-nAchR function, leading to synaptic dysfunction and memory loss. In this perspective, the indiscriminate Aβ removal might worsen neuronal homeostasis, causing a further impoverishment of learning and memory. Even if further studies are needed to better understand and validate these mechanisms, we believe that to deepen the role of Aβ in physiological conditions might represent the keystone to elucidate important aspects of AD pathogenesis.
-
People with autism spectrum disorders (ASDs) also have poorer fundamental motor skills. The development of postural control underlies both social and motor skills. All three elements are facilitated by the active use of visual information. This study compares how adults with ASD and typically developed adults (TDAs) respond to a postural illusion induced using neck vibration. Adults with ASD unlike the TDA, were not expected to correct the illusion using vision. ⋯ Our findings indicated the adults with ASD did not use visual information to control standing posture. In light of existing evidence that vision-for-perception is processed typically in ASD, our findings support a specific deficit in vision-for-action. These findings may explain why individuals with ASD experience difficulties with both social and motor skills since both require vision-for-action. Further research needs to investigate the division of these visual learning pathways in order to provide more specific intervention opportunities in ASD.