Neuroscience
-
Absence seizures are known to result from disturbances within the cortico-thalamocortical network, which remains partially synchronous under normal conditions but switches to a state of hypersynchronicity and hyperexcitability during absence seizures. There is evidence to suggest that impaired GABAergic inhibitory function within the thalamus could contribute to the generation of hypersynchronous oscillations in some animal models of absence epilepsy. Recently, we demonstrated region-specific alterations in the tissue expression level of GABAA receptors (GABA(A)Rs) α1 and β2 subunits within the thalamus of the stargazer mouse model of absence epilepsy. ⋯ Furthermore, we investigated whether tissue expression of GABA(A)R subunits α4 and δ, which constitute part of tonic GABA(A)Rs in the VP region, is altered in the stargazer mouse. Semi-quantitative Western blotting showed a significant increase in GABA(A)R α4 and δ subunits in the VP region of stargazer thalamus, which would indicate an increase in tonic GABA(A)R expression. Our findings show that there are changes in the levels of both phasic and tonic GABA(A)Rs in the VP thalamus; altered GABAergic inhibition within the VP could be one of many mechanisms contributing to the generation of absence seizures in this model.
-
Sodium-dependent high-affinity amino-acid transporters play crucial roles in terminating synaptic transmission in the central nervous system (CNS). However, there is lack of information about the mechanisms underlying the regulation of amino-acid transport by fast-acting neuromodulators, like ATP. Here, we investigated whether activation of the ATP-sensitive P2X7 receptor modulates Na(+)-dependent high-affinity γ-aminobutyric acid (GABA) and glutamate uptake into nerve terminals (synaptosomes) of the rat cerebral cortex. ⋯ Uptake inhibition by BzATP (100 μM) was also attenuated by calmidazolium, which selectively inhibits Na(+) currents through the P2X7 receptor pore. In conclusion, disruption of the Na(+) gradient by P2X7 receptor activation downmodulates high-affinity GABA and glutamate uptake into rat cortical synaptosomes. Interference with amino-acid transport efficacy may constitute a novel target for therapeutic management of cortical excitability.
-
Neuro-vascular rearrangement occurs in brain disorders, including epilepsy. Platelet-derived growth factor receptor beta (PDGFRβ) is used as a marker of perivascular pericytes. Whether PDGFRβ(+) cell reorganization occurs in regions of neuro-vascular dysplasia associated with seizures is unknown. ⋯ Our descriptive study points to microvascular-pericyte changes in the epileptic pathology. The possible link between PDGFRβ(+) cells, neuro-vascular dysplasia and remodeling during seizures is discussed.
-
The insular cortex in rat is a longitudinal strip that runs along the rostral half of the rhinal fissure. The previous studies showed connections between the posterior insular cortex (PIC) and some major cardiovascular centers. Based on the stimulation site, electrical or chemical stimulation of the PIC induced an increase or a decrease in blood pressure (BP) and heart rate (HR). ⋯ In conclusion, there were five types of cardiovascular and five types of single-unit responses, to Glut microinjection into PIC, from which three types were correlated. The left side of the PIC is involved more in the cardiovascular functions. These data along with the fact that most recorded neurons responded to baroreceptor activation, might imply the presence of feedback systems in the PIC, producing irregularity in BP and HR.
-
Infection by the neurotropic agent Toxoplasma gondii alters rodent behavior and can result in neuropsychiatric symptoms in humans. Little is understood regarding the effects of infection on host neural processes but alterations to dopaminergic neurotransmission are implicated. We have previously reported elevated levels of dopamine (DA) in infected dopaminergic cells however the involvement of the host enzymes and fate of the produced DA were not defined. ⋯ In contrast, cellular DA packaging appeared unchanged in single-cell microamperometry experiments and only a fraction of the increased DA was accessible to high potassium-induced release. This study provides some understanding of how this parasite produces elevated DA within dopaminergic cells without the toxic ramifications of free cytosolic DA. The mechanism for synthesis and packaging of DA by T. gondii-infected dopaminergic cells may have important implications for the effects of chronic T. gondii infection on humans and animals.