Neuroscience
-
Acrylamide (ACR) is an industrial pollutant, to which humans are exposed through chemicals associated with day to day human life and contributes to neurological disorders. The role of reactive gliosis upon toxic insults remains paradoxical, and the immunomodulatory events during ACR intoxication remain obscure. In view of this, the present study investigated ACR-induced (20mg/kgb.wt for 4weeks) neurodegeneration in the context of oxidative stress and associated inflammatory events and the ability of farnesol, a sesquiterpene, to mitigate reactive gliosis in the brain of Swiss albino mice. ⋯ Farnesol treatment significantly ameliorated ACR-mediated histological aberrations and reactive gliosis by downregulating Glial fibrillary acidic protein (GFAP) and Ionizsed calcium-binding adapter molecule-1 (Iba-1) in the cortex, hippocampus and striatum. Further, ACR stimulated increase in levels of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and inducible form of nitric oxide synthase (iNOS) were considerably decreased by farnesol. In conclusion, our findings indicate that farnesol exerts neuroprotective efficacy during ACR-induced neuropathology by suppressing reactive gliosis and associated inflammatory events.
-
Dysfunctional sensory gating has been proposed to result in the generation of phantom perceptions. In agreement, it has been recently suggested that tinnitus, a phantom perception of sound commonly associated with hearing loss, is the result of a breakdown of circuitry involving the limbic system and the medial geniculate nucleus (MGN) of the thalamus. In humans with tinnitus, structural changes and abnormal activity have been found to occur in the auditory pathway as well as parts of the limbic system such as the nucleus accumbens (NAc). ⋯ Histological analysis was used to confirm placement of electrodes. NAc electrical stimulation generally decreased spontaneous firing rates in MGN neurons and, in a limited number of neurons, caused an increase in firing rate. This suggests that NAc can modulate the activity of auditory neurons in the MGN and may play a role in the development of tinnitus.
-
In view of evidence that increased consumption of epicatechin (E) and quercetin (Q) may reduce the risk of stroke, we have measured the effects of combining E and Q on mitochondrial function and neuronal survival following oxygen-glucose deprivation (OGD). Relative to mouse cortical neuron cultures pretreated (24h) with either E or Q (0.1-10μM), E+Q synergistically attenuated OGD-induced neuronal cell death. E, Q and E+Q (0.3μM) increased spare respiratory capacity but only E+Q (0.3μM) preserved this crucial parameter of neuronal mitochondrial function after OGD. ⋯ Nitric oxide synthase (NOS) inhibition with L-N(G)-nitroarginine methyl ester (1.0μM) blocked neuroprotection by E (0.3μM) or Q (1.0μM). Oral administration of E+Q (75mg/kg; once daily for 5days) reduced hypoxic-ischemic brain injury. These findings suggest E and Q activate Akt- and Ca(2+)-mediated signaling pathways that converge on NOS and CREB resulting in synergistic improvements in neuronal mitochondrial performance which confer profound protection against ischemic injury.
-
Rapid eye movement sleep (REMS) is regulated by the interaction of the REM-ON and REM-OFF neurons located in the pedunculo-pontine-tegmentum (PPT) and the locus coeruleus (LC), respectively. Many other brain areas, particularly those controlling non-REMS (NREMS) and waking, modulate REMS by modulating these REMS-related neurons. Perifornical (PeF) orexin (Ox)-ergic neurons are reported to increase waking and reduce NREMS as well as REMS; dysfunction of the PeF neurons are related to REMS loss-associated disorders. ⋯ We conclude that the PeF stimulation-induced reduction in REMS was likely to be due to inhibition of REM-ON neurons in the PPT. As waking and NREMS are inversely related, subject to confirmation, the reduction in NREMS could be due to increased waking or vice versa. Based on our findings from this and earlier studies we have proposed a model showing connections between PeF- and PPT-neurons for REMS regulation.
-
Severe chronic stress can have a profoundly negative impact on the brain, affecting plasticity, neurogenesis, memory and mood. On the other hand, there are factors that upregulate neurogenesis, which include dietary antioxidants and physical activity. These factors are associated with biochemical processes that are also altered in age-related cognitive decline and dementia, such as neurotrophin expression, oxidative stress and inflammation. ⋯ The combination of dietary supplementation and exercise had multiple beneficial effects, as reflected in the number of doublecortin (DCX)-positive immature neurons in the dentate gyrus (DG), the sectional area of the DG and hippocampal CA1, as well as increased hippocampal BDNF messenger ribonucleic acid (mRNA) and serum vascular endothelial growth factor (VEGF) levels. In contrast, these benefits were not observed in chronically stressed animals exposed to either dietary supplementation or exercise alone. These findings could have important clinical implications for those suffering from chronic stress-related disorders such as major depression.