Neuroscience
-
Rapastinel (GLYX-13) is an N-methyl-d-aspartate receptor (NMDAR) modulator that has characteristics of a glycine site partial agonist. Rapastinel is a robust cognitive enhancer and facilitates hippocampal long-term potentiation (LTP) of synaptic transmission in slices. In human clinical trials, rapastinel has been shown to produce marked antidepressant properties that last for at least one week following a single dose. ⋯ A single injection of rapastinel also increased mature spine density in both brain regions 24h post-dosing. These data demonstrate that rapastinel produces its long-lasting antidepressant effects via triggering NMDAR-dependent processes that lead to increased sensitivity to LTP that persist for up to two weeks. These data also suggest that these processes led to the alterations in dendritic spine morphologies associated with the maintenance of long-term changes in synaptic plasticity associated with learning and memory.
-
In view of evidence that increased consumption of epicatechin (E) and quercetin (Q) may reduce the risk of stroke, we have measured the effects of combining E and Q on mitochondrial function and neuronal survival following oxygen-glucose deprivation (OGD). Relative to mouse cortical neuron cultures pretreated (24h) with either E or Q (0.1-10μM), E+Q synergistically attenuated OGD-induced neuronal cell death. E, Q and E+Q (0.3μM) increased spare respiratory capacity but only E+Q (0.3μM) preserved this crucial parameter of neuronal mitochondrial function after OGD. ⋯ Nitric oxide synthase (NOS) inhibition with L-N(G)-nitroarginine methyl ester (1.0μM) blocked neuroprotection by E (0.3μM) or Q (1.0μM). Oral administration of E+Q (75mg/kg; once daily for 5days) reduced hypoxic-ischemic brain injury. These findings suggest E and Q activate Akt- and Ca(2+)-mediated signaling pathways that converge on NOS and CREB resulting in synergistic improvements in neuronal mitochondrial performance which confer profound protection against ischemic injury.
-
Acrylamide (ACR) is an industrial pollutant, to which humans are exposed through chemicals associated with day to day human life and contributes to neurological disorders. The role of reactive gliosis upon toxic insults remains paradoxical, and the immunomodulatory events during ACR intoxication remain obscure. In view of this, the present study investigated ACR-induced (20mg/kgb.wt for 4weeks) neurodegeneration in the context of oxidative stress and associated inflammatory events and the ability of farnesol, a sesquiterpene, to mitigate reactive gliosis in the brain of Swiss albino mice. ⋯ Farnesol treatment significantly ameliorated ACR-mediated histological aberrations and reactive gliosis by downregulating Glial fibrillary acidic protein (GFAP) and Ionizsed calcium-binding adapter molecule-1 (Iba-1) in the cortex, hippocampus and striatum. Further, ACR stimulated increase in levels of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and inducible form of nitric oxide synthase (iNOS) were considerably decreased by farnesol. In conclusion, our findings indicate that farnesol exerts neuroprotective efficacy during ACR-induced neuropathology by suppressing reactive gliosis and associated inflammatory events.
-
The brain of children affected by organic acidemias develop acute neurodegeneration linked to accumulation of endogenous toxic metabolites like glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids. Excitotoxic and oxidative events are involved in the toxic patterns elicited by these organic acids, although their single actions cannot explain the extent of brain damage observed in organic acidemias. The characterization of co-adjuvant factors involved in the magnification of early toxic processes evoked by these metabolites is essential to infer their actions in the human brain. ⋯ For all cases, this effect was partially prevented by KA and l-NAME, and completely avoided by SAC. These findings suggest that early damaging events elicited by organic acids involved in metabolic acidemias can be magnified by toxic synergism with QUIN, and this process is mostly mediated by oxidative stress, and in a lesser extent by excitotoxicity and nitrosative stress. Therefore, QUIN can be hypothesized to contribute to the pathophysiology of brain degeneration in children with metabolic acidemias.
-
Regulation of GABA release in the dorsal motor nucleus of the vagus (DMV) potently influences vagal output to the viscera. The presence of functional ionotropic glutamate receptors (iGluRs) on GABAergic terminals that rapidly alter GABA release onto DMV motor neurons has been suggested previously, but the receptor subtypes contributing to the response are unknown. We examined the effect of selective activation and inhibition of iGluRs on tetrodotoxin-insensitive, miniature inhibitory postsynaptic currents (mIPSCs) in DMV neurons using patch-clamp recordings in brainstem slices from mice. ⋯ The effect of NMDA was prevented by AMPA/KA receptor blockade, suggesting indirect involvement of NMDA receptors. The stimulatory effect of capsaicin on GABA release was prevented when AMPA/KA or NMDA, but not AMPA receptors were blocked. Results of these studies indicate that presynaptic NMDAR and KA receptors regulate GABA release in the DMV, representing a heterosynaptic arrangement for rapidly modulating parasympathetic output, especially when synaptic excitation is elevated.