Neuroscience
-
Severe chronic stress can have a profoundly negative impact on the brain, affecting plasticity, neurogenesis, memory and mood. On the other hand, there are factors that upregulate neurogenesis, which include dietary antioxidants and physical activity. These factors are associated with biochemical processes that are also altered in age-related cognitive decline and dementia, such as neurotrophin expression, oxidative stress and inflammation. ⋯ The combination of dietary supplementation and exercise had multiple beneficial effects, as reflected in the number of doublecortin (DCX)-positive immature neurons in the dentate gyrus (DG), the sectional area of the DG and hippocampal CA1, as well as increased hippocampal BDNF messenger ribonucleic acid (mRNA) and serum vascular endothelial growth factor (VEGF) levels. In contrast, these benefits were not observed in chronically stressed animals exposed to either dietary supplementation or exercise alone. These findings could have important clinical implications for those suffering from chronic stress-related disorders such as major depression.
-
Regulation of GABA release in the dorsal motor nucleus of the vagus (DMV) potently influences vagal output to the viscera. The presence of functional ionotropic glutamate receptors (iGluRs) on GABAergic terminals that rapidly alter GABA release onto DMV motor neurons has been suggested previously, but the receptor subtypes contributing to the response are unknown. We examined the effect of selective activation and inhibition of iGluRs on tetrodotoxin-insensitive, miniature inhibitory postsynaptic currents (mIPSCs) in DMV neurons using patch-clamp recordings in brainstem slices from mice. ⋯ The effect of NMDA was prevented by AMPA/KA receptor blockade, suggesting indirect involvement of NMDA receptors. The stimulatory effect of capsaicin on GABA release was prevented when AMPA/KA or NMDA, but not AMPA receptors were blocked. Results of these studies indicate that presynaptic NMDAR and KA receptors regulate GABA release in the DMV, representing a heterosynaptic arrangement for rapidly modulating parasympathetic output, especially when synaptic excitation is elevated.