Neuroscience
-
G-protein-coupled receptors are thought to be involved in the detection of umami and l-amino acid taste. These include the heterodimer taste receptor type 1 member 1 (T1r1)+taste receptor type 1 member 3 (T1r3), taste and brain variants of mGluR4 and mGluR1, and calcium sensors. While several studies suggest T1r1+T1r3 is a broadly tuned l-amino acid receptor, little is known about the function of metabotropic glutamate receptors (mGluRs) in l-amino acid taste transduction. ⋯ We found that l-amino acid- and IMP-responsive cells also responded to each agonist. Antagonists for mGluR4 and mGluR1 significantly blocked the responses elicited by IMP and each of the l-amino acids. Collectively, these data provide evidence for the involvement of taste and brain variants of mGluR1 and 4 in l-amino acid and IMP taste responses in mice, and support the concept that multiple receptors contribute to IMP and l-amino acid taste.
-
Methylprednisolone sodium succinate (MPSS) has been proposed as a first-line treatment for acute spinal cord injury (SCI). Its clinical use remains, however, controversial because of the modest benefits and numerous side-effects. We investigated if MPSS could protect spinal neurons and glia using an in vitro model of the rat spinal cord that enables recording reflexes, fictive locomotion and morphological analysis of damage. ⋯ MPSS was, however, unable to reverse even a moderate neuronal loss and the concomitant suppression of fictive locomotion evoked by kainate (0.1mM; 1h). These results suggest that MPSS could, at least in part, contrast damage to spinal glia induced by a dysmetabolic state (associated to oxygen and glucose deprivation) and facilitate reactivation of spinal networks. Conversely, when even a minority of neurons was damaged by excitotoxicity, MPSS did not protect them nor did it restore network function in the current experimental model.
-
Loss-of-function mutations in the progranulin gene (GRN) are a common cause of familial frontotemporal lobar degeneration (FTLD). A high degree of heterogeneity in the age-of-onset, duration of disease, and clinical presentation of FTLD, even among families carrying the same GRN mutation, suggests that additional modifying genes may be important to pathogenesis. Progranulin-knockout mice display subtle behavioral abnormalities and progressive neuropathological changes, as well as altered dendritic morphology and synaptic deficits in the hippocampus. ⋯ Neuroinflammation due to progranulin deficiency is exaggerated in the B6 strain and present, but less pronounced, in the 129 strain. Differences between the strains in hippocampal neuron counts and neuronal morphology suggest a complex role for progranulin in the hippocampus. We conclude that core progranulin-mediated neurodegenerative phenotypes are penetrant on multiple inbred mouse strains, but that genetic background modulates progranulin's role in neuroinflammation and hippocampal biology.
-
The effects of intense noise exposure on the classical auditory pathway have been extensively investigated; however, little is known about the effects of noise-induced hearing loss on non-classical auditory areas in the brain such as the lateral amygdala (LA) and striatum (Str). To address this issue, we compared the noise-induced changes in spontaneous and tone-evoked responses from multiunit clusters (MUC) in the LA and Str with those seen in auditory cortex (AC) in rats. High-frequency octave band noise (10-20kHz) and narrow band noise (16-20kHz) induced permanent threshold shifts at high-frequencies within and above the noise band but not at low frequencies. ⋯ In contrast, firing rates in the Str were generally decreased and firing rate temporal profiles become more phasic and less prolonged. The altered firing rate and pattern at low frequencies induced by high-frequency hearing loss could have perceptual consequences. The tone-evoked hyperactivity in low-frequency MUC could manifest as hyperacusis whereas the discharge pattern changes could affect temporal resolution and integration.
-
Diabetes mellitus correlates with subsequent development of Alzheimer's disease (AD). An accumulation of very long chain fatty acids (VLCFAs) was observed in AD brains. We found previously that inhibiting peroxisomal β-oxidation by an inhibitor caused increases in VLCFA and β-amyloid peptide (Aβ) in the cortex and primary cultured neurons of rats. ⋯ Meanwhile, decreases in eicosapentenoic acid (EPA) and increases in oxidative stress [indicated by levels of malondialdehyde (MDA), and the protein expression of NOX4, p47(phox) and HO-1], Aβ, and the expression of AβPP and BACE1, two proteins involved in Aβ production, were observed. C26:0 levels were positively correlated with Aβ and MDA. This work suggests that in addition to decreases in EPA, increases in C26:0 by impaired peroxisomal β-oxidation can be a potential risk factor contributing to the progression of AD in diabetic brains via inducing oxidative stress.