Neuroscience
-
The clinical use of benzodiazepines is limited by the development of tolerance to their pharmacological effects. Tolerance to each of the pharmacological actions of benzodiazepines develops at different rates. The aim of this work was to investigate the mechanism of tolerance by performing behavioral tests in combination with biochemical studies. ⋯ Thus, these alterations could be part of the mechanism of tolerance to the sedative effects of diazepam. An increase in the percentage of α1-containing GABAA receptors in the cerebral cortex was observed following the 14-day treatment with diazepam but not the 7-day treatment, suggesting that tolerance to the anxiolytic effects is associated with a change in receptor subunit composition. The understanding of the molecular bases of tolerance could be important for the development of new drugs that maintain their efficacies over long-term treatments.
-
Transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is expressed in muscle afferents and direct activation of these receptors induces acute mechanical hypersensitivity. However, the functional role of TRPA1 under pathological muscle pain conditions and mechanisms by which TRPA1 mediate muscle pain and hyperalgesia are not clearly understood. Two rodent behavioral models validated to assess craniofacial muscle pain conditions were used to study ATP- and N-Methyl-D-aspartate (NMDA)-induced acute mechanical hypersensitivity and complete Freund's adjuvant (CFA)-induced persistent mechanical hypersensitivity. ⋯ Our findings showed that TRPA1 in muscle afferents plays an important role in the development of acute mechanical hypersensitivity and in the maintenance of persistent muscle pain and hypersensitivity. Our data suggested that TRPA1 may serve as a downstream target of pro-nociceptive ion channels, such as P2X3 and NMDA receptors in masseter afferents, and that increased TRPA1 expression under inflammatory conditions may contribute to the maintenance of persistent muscle pain and mechanical hyperalgesia. Mechanistic studies elucidating transcriptional or post-translational regulation of TRPA1 expression under pathological pain conditions should provide important basic information to further advance the treatment of craniofacial muscle pain conditions.
-
High-intensity sound can induce seizures in susceptible animals. After repeated acoustic stimuli changes in behavioural seizure repertoire and epileptic EEG activity might be seen in recruited limbic and forebrain structures, a phenomenon known as audiogenic kindling. It is postulated that audiogenic kindling can produce synaptic plasticity events leading to the spread of epileptogenic activity to the limbic system. ⋯ These findings show that repeated high-intensity sound stimulation prevent LTP of Schaffer-CA1 synapses from Wistar rats, without affecting spatial memory. This effect was not seen in hippocampi from audiogenic seizure-prone WARs. In WARs the link between auditory stimulation and hippocampal LTP seems to be disrupted which could be relevant for the susceptibility to seizures in this strain.
-
Epileptogenesis is a dynamic process initiated by insults to the brain that is characterized by progressive functional and structural alterations in certain cerebral regions, leading to the appearance of spontaneous recurrent seizures. Within the duration of the trauma to the brain and the appearance of spontaneous recurrent seizures, there is typically a latent period, which may offer a therapeutic window for preventing the emergence of epilepsy. ⋯ We demonstrate that, while administration of curcumin treatment during the latent period does not prevent occurrence of spontaneous recurrent seizures after status epilepticus, it can attenuate the severity of spontaneous recurrent seizures and protect against cognitive impairment. Thus, treatment with curcumin during the latent period following status epilepticus is beneficial in modifying epileptogenesis.
-
Angiotensin II (ANG II) is known to promote leptin production and secretion. Although ANG II type 1 receptors (AT1Rs) and leptin are expressed within the carotid body, it is not known whether AT1R and leptin are co-expressed in the same glomus cells nor if these peptides are affected within the carotid body by intermittent hypoxia (IH). This study was done to investigate whether ANG II modulated leptin signaling in the carotid body during IH. ⋯ Additionally, Capt and Los treatment eliminated the elevated carotid body leptin protein expression, and the changes in phosphorylated signal transducer and activator of transcription three protein, the short form of the leptin receptor (OB-R100), suppressor of cytokine signaling 3, and phosphorylated extracellular-signal-regulated kinase 1/2 protein expression induced by IH. However, Capt elevated the expression of OB-Rb protein, whereas Los abolished the changes in OB-Rb protein to IH. These findings, taken together with the previous observation that ANG II modifies carotid body chemosensitivity, suggest that the increased circulating levels of ANG II and leptin induced by IH act at the carotid body to alter leptin signaling within the carotid body which in turn may influence chemoreceptor function.