Neuroscience
-
Although several studies have suggested the neuroprotective effect of thymosin β4 (TB4), a major actin-sequestering protein, on the central nervous system, little is understood regarding the action of N-acetyl-serylaspartyl-lysyl-proline (Ac-SDKP), a peptide fragment of TB4 on brain function. Here, we examined neurogenesis-stimulative effect of Ac-SDKP. Intrahippocampal infusion of Ac-SDKP facilitated the generation of new neurons in the hippocampus. ⋯ Moreover, inhibition of vascular endothelial growth factor (VEGF) signaling blocked Ac-SDKP-facilitated neural proliferation. Subchronic intrahippocampal infusion of Ac-SDKP also increased spatial memory. Taken together, these data demonstrate that Ac-SDKP functions as a regulator of neural proliferation and indicate that Ac-SDKP may be a therapeutic candidate for diseases characterized by neuronal loss.
-
Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. ⋯ The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys.
-
Sickness behaviors have become the focus of great interest in recent years as they represent a clear case of how peripheral disturbances in immune signaling can disrupt quite complex behaviors. In the current study, we were interested in examining whether we could identify any significant morphological disturbances in microglia associated with these sickness-like behaviors in adult male Sprague-Dawley rats. We chose lipopolysaccharide (LPS 100 μg/kg/i.p.), to induce sickness-like behaviors as it is the most well-validated approach to do so in rodents and humans. ⋯ We undertook these complementary analysis of microglial cells in the both the pre- and infralimbic divisions of the PFC. Our results indicated that microglial soma size was significantly enlarged, while cell processes had contracted slightly following LPS administration. To our knowledge this study is to first to definitely demonstrate substantial microglial disturbances within the PFC following LPS delivered at a dose that was sufficient to induce significant sickness-like behavior.
-
The complex neuronal circuitry of the cerebellum is embedded within its lamina, folia, and lobules, which together play an important role in sensory and motor function. Studies in mouse models have demonstrated that both cerebellar lamination and lobule/fissure development are under genetic control. The cerebellar vermis of C57BL/6 mice exhibits spontaneous malformations of neuronal migration of posterior lobules (VIII-IX; molecular layer heterotopia); however, the extent to which other inbred mice also exhibit these malformations is unknown. ⋯ These data indicate that heterotopia formation is a weakly penetrant trait requiring homozygosity of one or more C57BL/6 alleles outside of chromosome 1 and the sex chromosomes. Additional morphological analyses showed no relationship between heterotopia formation and other features of lobule/fissure organization. These data are relevant toward understanding normal cerebellar development and disorders affecting cerebellar foliation and lamination.
-
A total of 211 neurons that discharged at the highest rate during sleep (sleep-active neurons) were recorded in non-anesthetized, head-restrained mice during the complete wake-sleep cycle in, and around, the laterodorsal (LDT) and sublaterodorsal (SubLDT) tegmental nuclei, which contain both cholinergic and non-cholinergic neurons. For the first time in mice, I reveal the presence, mainly in the SubLDT, of sleep-specific neurons displaying sustained tonic discharge either (i) just prior to, and during, paradoxical sleep (PS) (PS-on neurons) or (ii) during both slow-wave sleep (SWS) and PS (SWS/PS-on neurons). Both the PS-on and SWS/PS-on neurons showed either a low (< 10 Hz) or high (⩾ 10 Hz) rate of spontaneous firing and exhibited a biphasic narrow or medium-to-broad action potential, a characteristic of non-cholinergic neurons. ⋯ At the transition from SWS to PS, only the PS-on neurons exhibited a significant increase in discharge rate before PS onset, while, at the transition from PS to W, the SWS/PS-on neurons, then the PS-on neurons, displayed a significant decrease in the discharge rate before the end of PS. The SWS/PS-on neurons were more sensitive to the change in the electroencephalogram (EEG) than the PS-on neurons, as, during a PS episode, the slightest interruption of rhythmic theta activity resulted in cessation of discharge of the SWS/PS-on neurons. These findings support the view that, in the mouse SubLDT, PS-on neurons play an important role in the induction, maintenance, and cessation of PS, while SWS/PS-on neurons play a role in the maintenance of the PS state in particular and the sleep state in general.