Neuroscience
-
Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. ⋯ Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells.
-
The recent discovery that mammalian nociceptors express Toll-like receptors (TLRs) has raised the possibility that these cells directly detect and respond to pathogens with implications for either direct nociceptor activation or sensitization. A range of neuronal TLRs have been identified, however a detailed description regarding the distribution of expression of these receptors within sub-populations of sensory neurons is lacking. There is also some debate as to the composition of the TLR4 receptor complex on sensory neurons. ⋯ LPCAT1 is expressed by a proportion of both nociceptors and non-nociceptive neurons. LPCAT2 immunostaining is absent from neuronal profiles within both TG and DRG and is confined to non-neuronal cell types under naïve conditions. Together, our results show that nociceptors express the molecular machinery required to directly respond to pathogenic challenge independently from the innate immune system.
-
The 5-HT6 receptor (5-HT6R) is almost exclusively expressed in the brain and has emerged as a promising target for cognitive disorders, including Alzheimer's disease. In the present study, we have determined the cell types on which the 5-HT6R is expressed by colocalizing 5-HT6R mRNA with that of a range of neuronal and interneuronal markers in the rat brain. Here, we show that 5-HT6R mRNA was expressed at high levels in medium spiny neurons in caudate putamen and in nucleus accumbens, as well as in the olfactory tubercle. ⋯ Serotonergic, dopaminergic or cholinergic neurons did not express 5-HT6R mRNA. These data indicate that the 5-HT6R is located on GABAergic and glutamatergic principal neurons, and on a subset of interneurons mainly belonging to the 5-HT3aR subgroup suggesting that the 5-HT6R is positioned to regulate the balance between excitatory and inhibitory signaling in the brain. These data provide new insights into the mechanisms of 5-HT6R signaling.