Neuroscience
-
Paraquat (PQ) and maneb (MB) are potential risk factors for Parkinson's disease. However, their impact on non-motor disorders, monoamine neurotransmission and basal ganglia function is not clearly determined. Here we investigated the effects of combined treatment with PQ/MB on motor behavior, anxiety and "depressive-like" disorders, tissue content of monoamines, and subthalamic nucleus (STN) neuronal activity. ⋯ Biochemical analysis showed that PQ/MB reduced striatal dopamine (DA) tissue content paralleled by changes in the activity of STN neurons without changing the content of norepinephrine and serotonin in the cortex. Our data provide evidence that individuals are not equally sensitive to PQ/MB and show that the motor deficits in vulnerable animals, are not only a result of DA neuron degeneration, but may also be a consequence of peripheral disabilities. Nevertheless, the parkinsonian-like non-motor impairments may be a direct consequence of the bilateral DA depletion.
-
This study aimed to evaluate the effects of repetitive transcranial magnetic stimulation (rTMS) on learning and memory in a rat model of vascular dementia (VaD) and to analyze the associated mechanisms. Bilateral carotid artery occlusion (2-VO) was used to establish a rat model of VaD. High-frequency (5Hz) rTMS was performed on rats for four weeks. ⋯ There were no significant differences in NR2A expression among the three groups. These results suggest that rTMS improved learning and memory in the VaD model rats via the up-regulation of VEGF, BDNF and NMDARs. In addition, NR2B may be more important than NR2A for LTP induction in the hippocampus during rTMS treatment of VaD.
-
The distribution of spinal primary afferent terminals labeled transganglionically with the choleratoxin B subunit (CTB) or its conjugates changes profoundly after perineural treatment with capsaicin. Injection of CTB conjugated with horseradish peroxidase (HRP) into an intact nerve labels somatotopically related areas in the ipsilateral dorsal horn with the exceptions of the marginal zone and the substantia gelatinosa, whereas injection of this tracer into a capsaicin-pretreated nerve also results in massive labeling of these most superficial layers of the dorsal horn. The present study was initiated to clarify the role of C-fiber primary afferent neurons in this phenomenon. ⋯ Electron microscopic histochemistry disclosed a dramatic, ∼10-fold increase in the proportion of CTB-HRP-labeled unmyelinated dorsal root axons following perineural capsaicin or resiniferatoxin. The present results indicate that CTB-HRP labeling of C-fiber dorsal root ganglion neurons and their central terminals after perineural treatment with vanilloid compounds may be explained by their phenotypic switch rather than a sprouting response of thick myelinated spinal afferents which, in an intact nerve, can be labeled selectively with CTB-HRP. The findings also suggest a role for GM1 ganglioside in the modulation of nociceptor function and pain.
-
The neural command required to coordinate a multi-joint movement is inherently complex. During multi-joint movement of the limb, the force created from movement at one joint may create a torque at a second joint known as an interaction torque. Interaction torques may be assistive or resistive thereby aiding or opposing the motion of the second joint, respectively. ⋯ Using transcranial magnetic stimulation to probe neural output from the primary motor cortex, results indicate that corticospinal output controlling the upper arm is related to resistive interaction torques occurring at the shoulder joint. Further, cortical output to bi-articular muscles is associated with interaction torque and this may be driven by the fact that these muscles are in an advantageous position to control torques produced between inter-connection segments. Humans have a tendency to avoid reaching movements that involve resistive interaction torques and this may be driven by the requirement of increased neural output associated with these movements.
-
Exacerbated hippocampal activity has been associated to critical modifications of the intracellular signaling pathways. We have investigated rapid hippocampal adaptive responses induced by maximal electroshock seizure (MES). Here, we demonstrate that abnormal and exacerbated hippocampal activity induced by MES triggers specific and temporally distinct patterns of phosphorylation of extracellular signal-related kinase (ERK), mammalian target of rapamycin complex (mTORC) and Akt/glycogen synthase kinase-3 (Akt/GSK-3) pathways in the mouse hippocampus. ⋯ In contrast, the Akt/GSK-3 pathway is weakly altered. Finally, MES triggers a rapid upregulation of several plasticity-associated genes as a consequence exacerbated hippocampal activity. The results reported in the present study are reminiscent of the one observed in other models of generalized seizures, thus defining a common molecular footprint induced by intense and aberrant hippocampal activities.