Neuroscience
-
Gardenamide A (GA) is a stable genipin derivative with neuroprotective properties. It rescued pheochromocytoma cell (PC12) sympathetic cultures and retinal neuronal cells from apoptosis insult induced by serum deprivation. GA attenuated the accumulation of intracellular reactive oxygen species (ROS) and the loss of mitochondrial membrane potential. ⋯ The GA neuroprotective effect was inhibited by either the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002 or the mitogen-activated protein kinase (MAPK) pathway inhibitor PD98059. These results propose that the neuroprotective effect of GA on PC12 neuronal cell cultures was mediated through both the PI3K/Akt and ERK1/2 signaling pathways. Therefore, GA may serve as a pharmacological tool to investigate neuroprotective mechanisms of neurons afflicted by different insults.
-
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by a number of behavioral and social features. Although the etiology of most cases of ASD is idiopathic, a significant number of cases can be attributed to genetic causes, such as chromosome 15q duplications [dup(15q)]. Recent neuropathological investigations have provided evidence for distinct patterns of heterotopias and dysplasias in ASD and subjects with both ASD and dup(15q). ⋯ However, in subjects with dup(15q), we find significantly fewer neurons and in many nuclei, neurons were significantly smaller than in ASD subjects. Finally, we find a notably higher incidence of ectopic neurons in dup(15q). These results suggest that in the brainstem, these neuropathological conditions may evolve from some of the same developmental errors but are distinguished on microscopic features.
-
The precuneus has received considerable attention in the last decade, because of its cognitive functions, its role as a central node of the brain networks, and its involvement in neurodegenerative processes. Paleoneurological studies suggested that form changes in the deep parietal areas represent a major character associated with the origin of the modern human brain morphology. A recent neuroanatomical survey based on shape analysis suggests that the proportions of the precuneus are also a determinant source of overall brain geometrical differences among adult individuals, influencing the brain spatial organization. ⋯ The dilation/contraction of the precuneus, described as a major factor of variability within adult humans, is associated with absolute increase/decrease of its surface, but not with variation in thickness. Precuneal thickness, precuneal surface area and precuneal morphology are not correlated with psychological factors such as intelligence, working memory, attention control, and processing speed, stressing further possible roles of this area in supporting default mode functions. Beyond gross morphology, the processes underlying the large phenotypic variation of the precuneus must be further investigated through specific cellular analyses, aimed at considering differences in cellular size, density, composition, and structural covariance compared to other brain areas.
-
Patients with post-traumatic stress disorder (PTSD) present hippocampal (HPC) dysfunction, which may facilitate fear-related phenomena such as fear learning sensitization (i.e. potentiation of fear acquisition by initial fear conditioning (FC1)) and fear return (i.e. reactivation of extinguished fear). Fear return is sensitive to HPC high-frequency stimulation (HFS) in rats. The goal of the present study was to examine whether fear learning sensitization is also sensitive to HPC HFS in rats. ⋯ We also found that the effect of HPC HFS on fear learning sensitization required initial extinction. These findings suggest a pivotal role of the HPC in preventing proactive and retroactive effects of successive fear conditionings. These data also support the concept that HPC deactivation may be involved in fear learning sensitization and fear return in PTSD patients.
-
We have previously reported a time-dependent increase in melatonin (MLT) and decrease in dopamine (DA) in striatal dialysate 3 weeks after unilateral 6-hydroxydopamine (6-OHDA) lesioning in the rat substantia nigra pars compacta (SNc) and medial forebrain bundle (MFB). This study aimed to investigate dynamic and circadian variations in DA, MLT, glutamate (Glu) and γ-aminobutyric acid (GABA) in striatal dialysates in the same 6-OHDA animal model. These neurotransmitters were determined using high-performance liquid chromatography (HPLC). ⋯ Six weeks post-treatment, MLT levels correlated well with Glu and GABA levels at corresponding time-points in the striatum ipsilateral to the injected side in both groups, and increased MLT levels also correlated well with changes in Glu and GABA in the striatum in 6-OHDA-lesioned rats. These data suggest that 6-OHDA lesioning affects the endogenous productions of DA, MLT, Glu and GABA, and changes the MLT secretion pattern. Augmented striatal MLT levels and advanced MLT secretion pattern caused by unilateral intracerebral injection of 6-OHDA may influence the variations in Glu and GABA between day and night.