Neuroscience
-
The calsyntenins are atypical members of the cadherin superfamily that have been implicated in learning in Caenorhabditis elegans and memory formation in humans. As members of the cadherin superfamily, they could mediate cell-cell adhesion, although their adhesive properties have not been investigated. As an initial step in characterizing the calsyntenins, we have cloned clstn1, clstn2 and clstn3 from the zebrafish and determined their expression in the developing zebrafish nervous system. ⋯ Each of the ectodomains mediates homophilic interactions through two, amino-terminal cadherin repeats. In bead sorting assays, the calsyntenin ectodomains do not exhibit homophilic preferences. These data support the idea that calsyntenins could either act as adhesion molecules or as diffusible, homophilic or heterophilic ligands in the vertebrate nervous system.
-
Chronic stress, the administration of glucocorticoids and the prolonged activation of glucocorticoid receptors (GRs) are reported to induce affective changes in humans and rodents that resemble a depressive state. However, data concerning the behavioral and molecular effects of the selective activation of specific GRs are limited, and the conclusions derived remain debatable. In this study, our goal was to investigate the behavioral and molecular changes following the prolonged activation of GRs in mice via exposure to the specific agonist dexamethasone (DEX). ⋯ Furthermore, our results indicate a decrease in the mRNA expression of glutamate aspartate transporter (GLAST, Slc1a3), an astroglial cell marker, in the hippocampus and prefrontal cortex. These results demonstrate that the prolonged activation of GR receptors induced a depression-like state in mice, activated stress-related genes and induced a decrease in the mRNA expression of GLAST, an astroglial marker, in the prefrontal cortex and hippocampus. Together, the results reported here challenge several hypotheses concerning the role of GRs in the development of behavioral and molecular alterations relevant to stress-related disorders, such as depression, under the same experimental conditions.
-
Patients with post-traumatic stress disorder (PTSD) present hippocampal (HPC) dysfunction, which may facilitate fear-related phenomena such as fear learning sensitization (i.e. potentiation of fear acquisition by initial fear conditioning (FC1)) and fear return (i.e. reactivation of extinguished fear). Fear return is sensitive to HPC high-frequency stimulation (HFS) in rats. The goal of the present study was to examine whether fear learning sensitization is also sensitive to HPC HFS in rats. ⋯ We also found that the effect of HPC HFS on fear learning sensitization required initial extinction. These findings suggest a pivotal role of the HPC in preventing proactive and retroactive effects of successive fear conditionings. These data also support the concept that HPC deactivation may be involved in fear learning sensitization and fear return in PTSD patients.
-
We have previously reported a time-dependent increase in melatonin (MLT) and decrease in dopamine (DA) in striatal dialysate 3 weeks after unilateral 6-hydroxydopamine (6-OHDA) lesioning in the rat substantia nigra pars compacta (SNc) and medial forebrain bundle (MFB). This study aimed to investigate dynamic and circadian variations in DA, MLT, glutamate (Glu) and γ-aminobutyric acid (GABA) in striatal dialysates in the same 6-OHDA animal model. These neurotransmitters were determined using high-performance liquid chromatography (HPLC). ⋯ Six weeks post-treatment, MLT levels correlated well with Glu and GABA levels at corresponding time-points in the striatum ipsilateral to the injected side in both groups, and increased MLT levels also correlated well with changes in Glu and GABA in the striatum in 6-OHDA-lesioned rats. These data suggest that 6-OHDA lesioning affects the endogenous productions of DA, MLT, Glu and GABA, and changes the MLT secretion pattern. Augmented striatal MLT levels and advanced MLT secretion pattern caused by unilateral intracerebral injection of 6-OHDA may influence the variations in Glu and GABA between day and night.
-
Reports suggest that silent information regulation 2 homolog 3 (SIRT3) protects cardiomyocytes from oxidative stress-mediated death. SIRT3, a mitochondrial protein, is an essential regulator of mitochondrial function, and this regulation is important in many cerebrovascular diseases, especially stroke. Here, we investigated the role of SIRT3 in ischemia-induced neuronal death due to oxygen-glucose deprivation (OGD) using an in vitro model of cerebral ischemia. ⋯ Both SIRT3 and PGC-1α knockdown led to reduced mitochondrial membrane potential (Δψ) and Ca(2+) transients, especially under OGD conditions. Thus, our data suggest that SIRT3 protects PC12 cells from hypoxic injury via a mechanism that may involve PGC-1α and MnSOD. SIRT3 and PGC-1α regulate each other under physiologic and OGD conditions, thereby partially protecting against hypoxia or ischemia.