Neuroscience
-
Gardenamide A (GA) is a stable genipin derivative with neuroprotective properties. It rescued pheochromocytoma cell (PC12) sympathetic cultures and retinal neuronal cells from apoptosis insult induced by serum deprivation. GA attenuated the accumulation of intracellular reactive oxygen species (ROS) and the loss of mitochondrial membrane potential. ⋯ The GA neuroprotective effect was inhibited by either the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002 or the mitogen-activated protein kinase (MAPK) pathway inhibitor PD98059. These results propose that the neuroprotective effect of GA on PC12 neuronal cell cultures was mediated through both the PI3K/Akt and ERK1/2 signaling pathways. Therefore, GA may serve as a pharmacological tool to investigate neuroprotective mechanisms of neurons afflicted by different insults.
-
Steroid hormones are important players to regulate adult neurogenesis in the dentate gyrus of the hippocampus, but their involvement in the regulation of the same phenomenon in the subventricular zone (SVZ) of the lateral ventricles is not completely understood. Here, in male rats, we tested the existence of activational effects of testosterone (T) on cell proliferation in the adult SVZ. To this aim, three groups of male rats: castrated, castrated and treated with T, and controls were treated with 5-bromo-2'-deoxyuridine (BrdU) and killed after 24h. ⋯ In this case, no statistically significant difference was found among groups. Overall, our results clearly show that the gonadal hormones T and E2 represent important mediators of cell proliferation in the adult SVZ. Moreover, we show that such an effect is restricted to males, supporting adult neurogenesis in rats is a process differentially modulated in the two sexes.
-
Chronic stress, the administration of glucocorticoids and the prolonged activation of glucocorticoid receptors (GRs) are reported to induce affective changes in humans and rodents that resemble a depressive state. However, data concerning the behavioral and molecular effects of the selective activation of specific GRs are limited, and the conclusions derived remain debatable. In this study, our goal was to investigate the behavioral and molecular changes following the prolonged activation of GRs in mice via exposure to the specific agonist dexamethasone (DEX). ⋯ Furthermore, our results indicate a decrease in the mRNA expression of glutamate aspartate transporter (GLAST, Slc1a3), an astroglial cell marker, in the hippocampus and prefrontal cortex. These results demonstrate that the prolonged activation of GR receptors induced a depression-like state in mice, activated stress-related genes and induced a decrease in the mRNA expression of GLAST, an astroglial marker, in the prefrontal cortex and hippocampus. Together, the results reported here challenge several hypotheses concerning the role of GRs in the development of behavioral and molecular alterations relevant to stress-related disorders, such as depression, under the same experimental conditions.
-
Prenatal exposure to lipopolysaccharide (LPS) or high-fat diet (HFD) results in hippocampal impairment and cognitive deficits in offspring rats. What is not clear is how prenatal exposure to LPS combined with pre- and post-natal HFD would affect the hippocampus in offspring rats. ⋯ Prenatal exposure to LPS combined with pre- and post-natal HFD result in a protective effect on the hippocampus in offspring rats, and it might be a benefit from the predictive adaptive response to prenatal inflammation.
-
Syntaxins are a family of transmembrane proteins that participate in SNARE complexes to mediate membrane fusion events including exocytosis. Different syntaxins are thought to participate in exocytosis in different compartments of the nervous system such as the axon, the soma/dendrites or astrocytes. It is well known that exocytosis of synaptic vesicles at axonal presynaptic terminals involves syntaxin 1 but distributions of syntaxins on neuronal somal and dendritic, postsynaptic or astroglial plasma membranes are less well characterized. ⋯ Electron microscopy (EM)-immunogold labeling shows that syntaxin 1 is most abundant at the plasma membranes of axons and terminals, while syntaxin 4 is most abundant at astroglial plasma membranes. This differential distribution was evident even at close appositions of membranes at synapses, where syntaxin 1 was localized to the plasma membrane of the presynaptic terminal, including that at the active zone, while syntaxin 4 was localized to nearby peri-synaptic astroglial processes. These results show that syntaxin 4 is available to support exocytosis in astroglia.