Neuroscience
-
Modulation of corticostriatal synaptic activity by dopamine is required for normal sensorimotor behaviors. After loss of nigrostriatal dopamine axons in Parkinson's disease, l-3,4-dihydroxyphenlalanine (l-DOPA) and dopamine D2-like receptor agonists are used as replacement therapy, although these drugs also trigger sensitized sensorimotor responses including dyskinesias and impulse control disorders. In mice, we lesioned dopamine projections to the left dorsal striatum and assayed unilateral sensorimotor deficits with the corridor test as well as presynaptic corticostriatal activity with the synaptic vesicle probe, FM1-43. ⋯ Lesioned mice did not acquire food from their right, but overused that side following treatment with l-DOPA. Synaptic filtering on the lesioned side was abolished by either l-DOPA or a D2 receptor agonist, but when combined with a CB1 receptor antagonist, l-DOPA or D2 agonists normalized both synaptic filtering and behavior. Thus, high-pass filtering of corticostriatal synapses by the coordinated activation of D2, mGlu-R5, and CB1 receptors is required for normal sensorimotor response to environmental cues.
-
Healthy aging is accompanied by neurobiological changes that affect the brain's functional organization and the individual's cognitive abilities. The aim of this study was to investigate the effect of global age-related differences in the cortical white and gray matter on neural activity in three key large-scale networks. We used functional-structural covariance network analysis to assess resting state activity in the default mode network (DMN), the fronto-parietal network (FPN), and the salience network (SN) of young and older adults. ⋯ First, our results show that, in the direct comparison of resting state activity, young but not older adults reliably engage the SN and FPN in addition to the DMN, suggesting that older adults recruit these networks less consistently. Second, our results demonstrate that age-related decline in white matter integrity and gray matter volume is associated with activity in prefrontal nodes of the SN and FPN, possibly reflecting compensatory mechanisms. We suggest that age-related differences in gray and white matter properties differentially affect the ability of the brain to engage and coordinate large-scale functional networks that are central to efficient cognitive functioning.
-
The entorhinal cortex and other hippocampal and parahippocampal cortices are interconnected by a small number of GABAergic nonpyramidal neurons in addition to glutamatergic pyramidal cells. Since the cortical and basolateral amygdalar nuclei have cortex-like cell types and have robust projections to the entorhinal cortex, we hypothesized that a small number of amygdalar GABAergic nonpyramidal neurons might participate in amygdalo-entorhinal projections. To test this hypothesis we combined Fluorogold (FG) retrograde tract tracing with immunohistochemistry for the amygdalar nonpyramidal cell markers glutamic acid decarboxylase (GAD), parvalbumin (PV), somatostatin (SOM), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and the m2 muscarinic cholinergic receptor (M2R). ⋯ Since GABAergic projection neurons typically have low perikaryal levels of GABAergic markers, it is actually possible that most or all of the amygdalar LRNP neurons are GABAergic. Like GABAergic LRNP neurons in hippocampal/parahippocampal regions, amygdalar LRNP neurons that project to the entorhinal cortex are most likely involved in synchronizing oscillatory activity between the two regions. These oscillations could entrain synchronous firing of amygdalar and entorhinal pyramidal neurons, thus facilitating functional interactions between them, including synaptic plasticity.
-
In this study, a novel TRI (triple reuptake inhibitors) antidepressant candidate RO-05 (4-[1-[1-(benzoyloxy)cyclohexyl]-2-(dimethylamino)ethyl]-phenyl benzoate) was investigated in TST (tail suspension test), FST (forced swimming test) and CMS (chronic mild stress) model. Results showed RO-05 significantly decreased the immobility time in FST and TST at 4.5-, 9-, 18-mg/kg in rats and 9-, 18-, 36-mg/kg in mice. Chronic administration of 18-mg/kg RO-05 improved the behavioral index, anhedonia and normalized the hyperactivity of HPA (hypothalamic-pituitary-adrenal axis) of CMS rats. ⋯ RO-05 also elevated the expression of BDNF (brain-derived neurotrophic factor) in CMS rat hippocampus. In summary, our results indicated that RO-05 is a promising antidepressant candidate. The possible antidepressant mechanisms of RO-05 were the modulation of FKBP5 expression, GR activation, corresponding inhibition of HPA axis hyperactivity, and the increase of BDNF expression.
-
Neonatal cerebral hypoxia-ischemia (HI) is a major cause of neurological disorders and the most common cause of death and permanent disability worldwide, affecting 1-2/1000 live term births and up to 60% of preterm births. The Levine-Rice is the main experimental HI model; however, critical variables such as the age of animals, sex and hemisphere damaged still receive little attention in experimental design. We here investigated the influence of sex and hemisphere injured on the functional outcomes and tissue damage following early (hypoxia-ischemia performed at postnatal day 3 (HIP3)) and late (hypoxia-ischemia performed at postnatalday 7 (HIP7)) HI injury in rats. ⋯ Sham animals had their carotids exposed but not occluded nor submitted to the hypoxic atmosphere. Behavioral impairments were assessed in the open field arena, in the Morris water maze and in the inhibitory avoidance task; volumetric extent of tissue damage was assessed using cresyl violet staining at adult age, after completing behavioral assessment. The overall results demonstrate that: (1) HI performed at the two distinct ages cause different behavioral impairments and histological damage in adult rats (2) behavioral deficits following neonatal HIP3 and HIP7 are task-specific and dependent on sex and hemisphere injured (3) HIP7 animals presented the expected motor and cognitive deficits (4) HIP3 animals displayed discrete but significant cognitive impairments in the left hemisphere-injured females (5) HI brain injury and its consequences are determined by animal's sex and the damaged hemisphere, markedly in HIP3-injured animals.