Neuroscience
-
The present review is focused on neural mechanisms responsible of group III and IV muscle afferent actions on central motor drive during physical exercise in both healthy and pathological populations. It seems that these mechanisms contribute to improve muscle performance by regulating the peripheral fatigue development and by avoiding excessive muscle impairments. ⋯ In addition, given that the recovery of the sensory feedback plays a key role in the improvement of motor function following numerous neuromuscular traumas, the role of these afferents in preclinical and clinical situations is also explored in animal and human models. It is supposed that studying the motor and autonomic functions of group III and IV afferents might help healthcare professionals in the future to find appropriate treatments and rehabilitation programs.
-
Comparative Study
Substitute or complement? Defining the relative place of EEG and fMRI in the detection of voluntary brain reactions.
To improve the assessment of awareness in patients with disorders of consciousness, recent protocols using functional Magnetic Resonance Imaging (fMRI) have been developed, and led some specialized coma centers to use this method on a routine basis. Recently, promising results have also been observed with electroencephalography (EEG), a less expensive and widely available technique. However, since the spatiotemporal nature of the recorded signal differs between both EEG and fMRI, the question of whether one method could substitute or should complement the other method is a matter of debate. ⋯ In the communication task, neither EEG nor fMRI alone gave satisfactory results and no reliable communication could be established in approximately 1/3rd of the participants. If fMRI showed the best performance to detect volitional reactions in mental imagery tasks, our results provide evidence that the use of EEG must not be underestimated since a better detection was found with this method for at least one subject. More than being used as a substitute, EEG should complement fMRI to improve the detection of sign of awareness, and to reduce the risks of misjudgments.
-
The effect of anodal transcranial direct current stimulation on multi-limb coordination performance.
Motor coordination is the combination of body movements performed in a well-planned and controlled manner based upon motor commands from the brain. Several interventions have been in practice to improve motor control. Transcranial direct current stimulation (tDCS) is getting a lot of attention these days for its effect in improving motor functions. ⋯ Number of errors and reaction time were used as outcome parameters. Our findings showed that, anodal tDCS reduced the number of errors only in the heterolateral coordination condition, however there was no change in reaction time. No changes were found for the homolateral and three-limb coordination conditions.
-
The mechanisms by which alcohol drinking promotes addiction in humans and self-administration in rodents remain obscure, but it is well known that alcohol can enhance dopamine (DA) neurotransmission from neurons of the ventral tegmental area (VTA) and increase DA levels within the nucleus accumbens and prefrontal cortex. We recorded from identified DA neuronal cell bodies within ventral midbrain slices prepared from a transgenic mouse line (TH-GFP) using long-term stable extracellular recordings in a variety of locations and carefully mapped the responses to applied ethanol (EtOH). We identified a subset of DA neurons in the medial VTA located within the rostral linear and interfascicular nuclei that fired spontaneously and exhibited a concentration-dependent increase of firing frequency in response to EtOH, with some neurons responsive to as little as 20mM EtOH. ⋯ Typically, these lateral VTA DA cells had very slow firing rates, and all exhibited inhibition by quinpirole via D2 "autoreceptors". VTA non-DA cells did not show any significant response to low levels of EtOH. These findings are consistent with evidence for heterogeneity among midbrain DA neurons and provide an anatomical and pharmacological distinction between DA neuron sub-populations that will facilitate future mechanistic studies on the actions of EtOH in the VTA.
-
We have analyzed the expression pattern of a novel serine/threonine kinase gene Ulk4 during forebrain development in Xenopus laevis. To this aim, we firstly cloned a Ulk4 cDNA fragment from X.laevis and generated a RNA probe that was used for its detection by in situ hybridization. Throughout development xUlk4 expression was detected along the ventricular (vz) and subventricular zones (svz) of all forebrain regions, with the exception of the vz of the striatum. ⋯ We have also found minor expression of xUlk4 in some DCX- or MAP2-positive cells but not in TH-positive neurons. These findings suggest that Ulk4 may play roles in neural stem/progenitor cells during neurogenesis both in development and in the adulthood, in migrating cells as well as in cells committed to neuronal fate in Xenopus. Moreover, the results obtained in this study argue for an involvement of Ulk4 in the control of the neuroendocrine homeostatic functions in the brain.