Neuroscience
-
It is believed that phase synchronization facilitates neural communication and neural plasticity throughout the hippocampal-cortical network, and further supports cognition and memory. The pathway from the ventral hippocampus to the medial prefrontal cortex (mPFC) is thought to play a significant role in emotional memory processing. Therefore, the information transmission on the pathway was hypothesized to be disrupted in the depressive state, which could be related to its impaired synaptic plasticity. ⋯ In addition, theta phase coupling was positively correlated with synaptic plasticity on vCA1-mPFC pathway. Moreover, the theta-slow gamma phase-amplitude coupling in vCA1 was long-term enhanced after high frequency stimulation. These results suggest that the impaired synaptic plasticity in vCA1-mPFC pathway could be reflected by the attenuated theta phase coupling and theta-gamma cross frequency coupling of LFPs in the depression state.
-
The importance of astrocyte heterogeneity came out as a hot topic in neurosciences especially over the last decades, when the development of new methodologies allowed demonstrating the existence of big differences in morphological, neurochemical and physiological features between astrocytes. However, although the knowledge about the biology of astrocytes is increasing rapidly, an important characteristic that remained unexplored, until the last years, has been the relationship between astrocyte lineages and cell heterogeneity. To fill this gap, a new method called StarTrack was recently developed, a powerful genetic tool that allows tracking astrocyte lineages forming cell clones. ⋯ Because of this specific labeling, astrocyte clones, exhibiting heterogeneous morphologies and features, can be easily analyzed in relation to their ontogenetic origin. This review summarizes how astrocyte heterogeneity can be decoded studying the embryonic development of astrocyte lineages and their clonal relationship. Finally, we discuss about some of the challenges and opportunities emerging in this exciting area of investigation.
-
The World Health Organization has predicted that by 2040 neurodegenerative diseases will overtake cancer to become the world's second leading cause of death after cardiovascular disease. This has sparked the development of several European and American brain research initiatives focusing on elucidating the underlying cellular and molecular mechanisms of neurodegenerative diseases. ⋯ Understanding the molecular mechanisms by which these membrane channels function, in health and disease, might be particularly influential in establishing conceptual frameworks to develop new therapeutics against Cx and Panx channels. This review focuses on current insights and emerging concepts, particularly the impact of connexin43 and pannexin1, under neuroprotective and neurodegenerative conditions within the context of astrocytes.
-
Humans and other animals show a remarkable capacity for resilience following traumatic, stressful events. Resilience is thought to be an active process related to coping with stress, although the cellular and molecular mechanisms that support active coping and stress resistance remain poorly understood. In this review, we focus on the neurobiological mechanisms by which environmental and social experiences promote stress resistance. ⋯ Also, hamsters that have achieved dominant social status show reduced conditioned defeat as well as cellular and molecular changes in the neural circuits controlling the conditioned defeat response. We propose that experience-dependent neural plasticity occurs in the prelimbic (PL) cortex, infralimbic (IL) cortex, and ventral medial amygdala (vMeA) during the maintenance of dominance relationships, and that adaptations in these neural circuits support stress resistance in dominant individuals. Overall, behavioral treatments that promote success in competitive interactions may represent valuable interventions for instilling resilience.
-
Poly(ADP-ribose) polymerase (PARP) is activated by oxidative stress and plays an important role in traumatic brain injury (TBI). The objective of this study was to investigate whether PARP activation participated in the blood-brain barrier (BBB) disruption and edema formation in a mouse model of controlled cortical impact (CCI). N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide (PJ34) (10 mg/kg), a selective PARP inhibitor, was administered intraperitoneally at 5 min and 8 h after experimental CCI. ⋯ Our data showed the up-regulation of nuclear factor-κB in cytosolic fractions and nuclear fractions in the injured cortex, and these changes were reversed by PJ34. Moreover, PJ34 significantly lessened the activities of myeloperoxidase and the levels of matrix metalloproteinase-9, enhanced the levels of occludin, laminin, collagen IV and integrin β1, reduced neurological deficits, decreased the contusion volume, and attenuated the necrotic and apoptotic neuronal cell death. These data suggest the protective effects of PJ34 on BBB integrity and cell death during acute TBI.