Neuroscience
-
Neurons and astrocytes, the two major cell populations in the adult brain, are characterized by their own mode of intercellular communication--the synapses and the gap junctions (GJ), respectively. In addition, there is increasing evidence for dynamic and metabolic neuroglial interactions resulting in the modulation of synaptic transmission at the so-called "tripartite synapse". Based on this, we have investigated at the ultrastructural level how excitatory synapses (ES) and astroglial GJ are spatially distributed in layer IV of the barrel cortex of the adult mouse. ⋯ Interestingly, the distance between an ES and an astroglial GJ was found to be significantly lower than that between either two synapses or between two GJ. These observations indicate that the two modes of cell-to-cell communication are not randomly distributed in layer IV of the barrel cortex. Consequently, this feature may provide the morphological support for the recently reported functional interactions between neuronal circuits and astroglial networks.
-
In animal models, environmental enrichment (EE) has been found to be an efficient treatment for alleviating the consequences of neonatal hypoxia-ischemia (HI). However the potential for this therapeutic strategy and the mechanisms involved are not yet clear. The aim of present study is to investigate behavioral performance in the ox-maze test and Na+,K+-ATPase, catalase (CAT) and glutathione peroxidase (GPx) activities in the hippocampus of rats that suffered neonatal HI and were stimulated in an enriched environment. ⋯ The activities of GPx and CAT were not changed by HI in any group evaluated. In conclusion, EE was effective in recovering learning and memory impairment in the ox-maze task and Na+,K+-ATPase activity in the hippocampus caused by HI. The present data provide further support for the therapeutic potential of environmental stimulation after neonatal HI in rats.
-
Neurobiological and genetic mechanisms underlying increased intake of and preference for nutritive sugars over non-nutritive sweeteners are not fully understood. We examined the roles of subnuclei of the amygdala in the shift in preference for a nutritive sugar. Food-deprived mice alternately received caloric sucrose (1.0 M) on odd-numbered training days and a non-caloric artificial sweetener (2.5 mM saccharin) on even-numbered training days. ⋯ Microlesions with iontophoretic excitotoxin injections into the CeA did not block the training-dependent changes. These results suggest that food-deprived animals selectively shift their preference for a caloric sugar over a non-caloric sweetener through the alternate consumption of caloric and non-caloric sweet substances. The present data also suggest that the BLA, but not CeA, plays a role in the selective shift in sweetener preference.
-
Since the discovery that long-term memory is dependent on protein synthesis, several transcription factors have been found to participate in the transcriptional activity needed for its consolidation. Among them, NF-kappa B is a constitutive transcription factor whose nuclear activity has proven to be necessary for the consolidation of inhibitory avoidance in mice. This transcription factor has a wide distribution in the nervous system, with a well-reported presence in dendrites and synaptic terminals. ⋯ In this study we identify two pools of synaptosomal NF-kappa B, one obtained with the synaptoplasm (free fraction) and the second bound to the synaptosomal membranes. During the early steps of consolidation the first pool is activated, as the membrane associated transcription factor fraction increases and concomitantly the free fraction decreases. These results suggest that the activation of synaptic NF-kappa B and its translocation to membranes are part of the consolidation of long-term memory in mice.
-
Previous studies have demonstrated that the red nucleus (RN) participates in the modulation of neuropathic pain and plays both a facilitated role by pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β), and an inhibitory role through the anti-inflammatory cytokine IL-10. In this study, we sought to investigate the expressions and roles of transforming growth factor-beta (TGF-β), a potent anti-inflammatory cytokine, as well as its type 1 receptor (TGF-β-R1) in the RN in normal and neuropathic pain rats. Immunohistochemistry showed that TGF-β and TGF-β-R1 were constitutively expressed in the RN of normal rats, and co-localized with neurons and all three glial cell types, astrocytes, microglia and oligodendrocytes. ⋯ Microinjection of different doses of anti-TGF-β antibody (250, 125, 50 ng) into the unilateral RN of normal rats dose-dependently decreased the mechanical withdrawal threshold of contralateral (but not ipsilateral) hind paw and induced significant mechanical hypersensitivity, which was similar to mechanical allodynia induced by peripheral nerve injury. In contrast, microinjection of different doses of recombinant rat TGF-β1 (500, 250, 100 ng) into the RN contralateral to the nerve injury side of SNI rats dose-dependently increased the paw withdrawal threshold and significantly alleviated mechanical allodynia induced by SNI. These results suggest that TGF-β in the RN participates in nociceptive processing and plays antinociceptive effects under normal physiological condition and in the development of neuropathic pain induced by SNI.