Neuroscience
-
Compared to other senses, temporal perception of odors seems fairly slow. In addition it has been shown in previous studies that even not consciously perceived odors could influence our behavior. Aim of the current study therefore was to study the interstimulus interval (ISI) length, which is necessary between two repetitive stimuli to be able to perceive them separately. The additional aim focused on observing central odor processing of not perceived odorous stimuli. ⋯ The two stimuli of a stimulus pair were perceived separately more often with increasing ISI length. This increase was significant until an ISI between the stimuli of 4s. Odor intensity, pleasantness, trigeminallity and sex had no major influence on this. In addition we were able to observe that OERPs are less often detected in response to not perceived olfactory stimuli. However, the presence of OERP in response to not perceived stimuli in more than half of the cases indicated that even not perceived stimuli are centrally processed.
-
Exercise reduces the risk of developing a number of neurological disorders and increases the efficiency of cellular energy production. However, overly strenuous exercise produces oxidative stress. Proper oxygenation is crucial for the health of all tissues, and tight regulation of cellular oxygen is critical to balance O2 levels and redox homeostasis in the brain. ⋯ Loss of HIF1α also abolishes exercise-induced neuroprotection. In mice lacking Hif2α in postnatal neurons, the number of TH+ DA neurons in the adult SNpc is diminished, but 3months of exercise rescues this loss. We conclude that HIF1α is necessary for exercise-induced neuroprotection and both HIF1α and HIF2α are necessary for the survival and function of adult SNpc DA neurons.
-
Clinical and preclinical research suggest that activation of the mesolimbic dopamine (DA) system is involved in mediating the rewarding actions of drugs of abuse, as well as promoting drug-seeking behavior. Inhibition of DA D1 receptors in the nucleus accumbens (Acb) can reduce ethanol (EtOH)-seeking behavior of non-selective rats triggered by environmental context. However, to date, there has been no research on the effects of D1 receptor agents on EtOH- seeking behavior of high alcohol-preferring (P) rats following prolonged abstinence. ⋯ Microinfusion of D1 receptor agents into the Acb core did not alter responding on the EtOH lever. Responses on the water lever were not altered by any of the treatments. The results suggest that activation of D1 receptors within the Acb shell, but not Acb core, are involved in mediating PSR of EtOH-seeking behavior of P rats.
-
We investigated phonological processing in normal readers to answer the question to what extent phonological recoding is active during silent reading and if or how it guides lexico-semantic access. We addressed this issue by looking at pseudohomophone and baseword frequency effects in lexical decisions with event-related functional magnetic resonance imaging (fMRI). ⋯ This baseword frequency effect was qualified by activation differences in bilateral angular and left supramarginal, and bilateral middle temporal gyri for pseudohomophones with low- compared to high-frequency basewords. We propose that lexical decisions to pseudohomophones involves phonology-driven lexico-semantic activation of their basewords and that this is converging neuroimaging evidence for automatically activated phonological representations during silent reading in experienced readers.
-
Sphingomyelin derivatives like sphingosine have been shown to enhance secretion in a variety of systems, including neuroendocrine and neuronal cells. By studying the mechanisms underlying this effect, we demonstrate here that sphingomyelin rafts co-localize strongly with synaptosomal-associated protein of 25Kda (SNAP-25) clusters in cultured bovine chromaffin cells and that they appear to be linked in a dynamic manner. In functional terms, when cultured rat chromaffin cells are treated with sphingomyelinase (SMase), producing sphingomyelin derivatives, the secretion elicited by repetitive depolarizations is enhanced. ⋯ Interestingly, by evaluating the membrane capacitance we found that the events in control untreated cells corresponded to two populations of microvesicles and granules, and the fusion of both these populations is clearly enhanced after treatment with SMase. Furthermore, SMase does not increase the size of chromaffin granules. Together, these results strongly suggest that SNARE-mediated exocytosis is enhanced by the generation of SMase derivatives, reflecting an increase in the frequency of fusion of both microvesicles and chromaffin granules rather than an increase in the size of these vesicles.