Neuroscience
-
Amplitudes of mu and beta (7-26Hz) oscillations measured by electroencephalography over the sensorimotor areas are suppressed during motor imagery as well as during voluntary movements. This phenomenon is referred to as event-related desynchronization (ERD) and is known to reflect motor cortical excitability. The increased motor cortical excitability associated with ERD during hand motor imagery would induce a descending cortical volley to spinal motoneurons, resulting in facilitation of spinal motoneuronal excitability. ⋯ The right median nerve was stimulated at wrist level when the ERD magnitude of the contralateral hand sensorimotor area exceeded predetermined thresholds during motor imagery. The results showed ERD magnitude during hand motor imagery was associated with an increase in F-wave persistence, but not with the response average of F-wave amplitude or F-wave latency. These findings suggest that the ERD magnitude may be a biomarker representing increases in the excitability of both cortical and spinal levels.
-
Voltage-dependent sodium channels are membrane proteins essential for cell excitability. They are composed by a pore-forming α-subunit, encoded in mammals by up to nine different genes, and four different ancillary β-subunits. The expression pattern of the α subunit isoforms confers the distinctive functional and pharmacological properties to different excitable tissues. β-Subunits are important modulators of channel function and expression. ⋯ Focusing on the effects of the C121W mutation, we found that it causes the modification of 214 genes, most of them were down-regulated (202) in GH3 cells; on the contrary, it determined the up-regulation of only five genes in H9C2 cells. Interestingly, most genes modified by the C121W β1 subunit are involved in pivotal processes of the cell such as cellular communication and protein expression. Our results confirm the important role of the sodium channel β1 subunit in the control of NaCh gene expression, and highlight once more the tissue-specific effect of the C121W mutation.
-
The neural substrate of sleep homeostasis is unclear, but both cortical and subcortical structures are thought to be involved in sleep regulation. To test whether prior neuronal activity in the cortex or in subcortical regions drives sleep rebound, we systemically administered atropine (100mg/kg) to rats, producing a dissociated state with slow-wave cortical electroencephalogram (EEG) but waking behavior (e.g. locomotion). ⋯ Consistent with the behavioral and cortical EEG state produced by systemic atropine, c-Fos expression was low in the cortex but high in multiple subcortical arousal systems. These data suggest that subcortical arousal and behavior are sufficient to drive sleep homeostasis, while a sleep-like pattern of cortical activity is not sufficient to satisfy sleep homeostasis.
-
Our aim was to analyze the participation of inhibitory and stimulatory signals in the temporal dissociation between sodium depletion (SD) induced by peritoneal dialysis (PD) and the appearance of sodium appetite (SA), particularly 2h after PD, when the rats are hypovolemic/natremic but SA is not evident. We investigated the effects of bilateral injections of the serotonin (5-HT) receptor antagonist, methysergide, into the lateral parabrachial nucleus (LPBN) on hypertonic NaCl and water intake 2h vs. 24h after PD. We also studied plasma renin activity (PRA) and aldosterone (ALDO) concentration 2h vs. 24h after PD. ⋯ We also found for the first time a significant increase 2h after PD in the number of Fos-ir neurons in the brainstem nuclei that have been shown to be involved in the inhibition of SA. In summary, the results show that 5HT-mechanisms in the LPBN modulate sodium intake during the delay of SA when the renin angiotensin aldosterone system (RAAS) is increased. In addition, the activation of brainstem areas previously associated with the satiety phase of SA is in part responsible for the temporal dissociation between SD and behavioral arousal.
-
High mortality and morbidity rates are observed in patients with bacterial meningitis (BM) and urge for new adjuvant treatments in addition to standard antibiotic therapies. In BM the hippocampal dentate gyrus is injured by apoptosis while in cortical areas ischemic necrosis occurs. Experimental therapies aimed at reducing the inflammatory response and brain damage have successfully been evaluated in animal models of BM. Fluoxetine (FLX) is an anti-depressant of the selective serotonin reuptake inhibitors (SSRI) and was previously shown to be neuroprotective in vitro and in vivo. We therefore assessed the neuroprotective effect of FLX in experimental pneumococcal meningitis. ⋯ A significant neuroprotective effect of FLX on the hippocampus was observed in acute pneumococcal meningitis in infant rats.