Neuroscience
-
In recent years, the zebrafish has emerged as an appealing model system to tackle questions relating to the neural circuit basis of behavior. This can be attributed not just to the growing use of genetically tractable model organisms, but also in large part to the rapid advances in optical techniques for neuroscience, which are ideally suited for application to the small, transparent brain of the larval fish. ⋯ This approach revealed the broadly distributed network of neurons that were active during the behavior and provided insights into the fine-scale functional architecture in the brain, inter-individual variability, and the spatial distribution of behaviorally relevant signals. Combined with mapping anatomical and functional connectivity, targeted electrophysiological recordings, and genetic labeling of specific populations, this comprehensive approach in zebrafish provides an unparalleled opportunity to study complete circuits in a behaving vertebrate animal.
-
Selection of a model organism creates tension between competing constraints. The recent explosion of modern molecular techniques has revolutionized the analysis of neural systems in organisms that are amenable to genetic techniques. Yet, the non-human primate remains the gold-standard for the analysis of the neural basis of behavior, and as a bridge to the operation of the human brain. ⋯ Here, we review experiments and computational studies on a circuit function called "neural integration" that occurs in the brainstems of larval zebrafish, primates, and species "in between". We show that analysis of circuit structure using modern molecular and imaging approaches in zebrafish has remarkable explanatory power for details of the responses of integrator neurons in the monkey. The combination of research from the two species has led to a much stronger hypothesis for the implementation of the neural integrator than could have been achieved using either species alone.
-
The fruit fly Drosophila melanogaster is ideally suited for investigating the neural circuit basis of behavior. Due to the simplicity and genetic tractability of the fly brain, neurons and circuits are identifiable across animals. Additionally, a large set of transgenic lines has been developed with the aim of specifically labeling small subsets of neurons and manipulating them in sophisticated ways. ⋯ Thus, the fly brain is an attractive system in which to explore both computations and mechanisms underlying behavior at levels spanning from genes through neurons to circuits. This review summarizes the advantages Drosophila offers in achieving this objective. A recent neurophysiology study on olfactory behavior is also introduced to demonstrate the effectiveness of these advantages.
-
Human psychophysics is the quantitative measurement of our own perceptions. In essence, it is simply a more sophisticated version of what humans have done since time immemorial: noticed and reflected upon what we can see, hear, and feel. In the 21st century, when hugely powerful techniques are available that enable us to probe the innermost structure and function of nervous systems, is human psychophysics still relevant? I argue that it is, and that in combination with other techniques, it will continue to be a key part of neuroscience for the foreseeable future. I discuss these points in detail using the example of binocular stereopsis, where human psychophysics in combination with physiology and computational vision, has made a substantial contribution.
-
Decision making can be defined as the flexible integration and transformation of information from the external world into action. Recently, the development of novel genetic tools and new behavioral paradigms has made it attractive to study behavior of all kinds in rodents. By some perspectives, rodents are not an acceptable model for the study of decision making due to their simpler behavior often attributed to their less extensive cortical development when compared to non-human primates. ⋯ We review insights from comparative anatomy that suggest the expansion of cortical-striatal connectivity is a key development in evolutionary increases in behavioral flexibility. We briefly review studies that establish a role for corticostriatal circuits in integrative decision making. Finally, we provide an overview of a few recent, highly complementary rodent decision making studies using genetic tools, revealing with new cellular and temporal resolution how, when and where information can be integrated and compared in striatal circuits to influence choice.