Neuroscience
-
The frontostriatal system plays a critical role in emotional and cognitive control. Brain-derived neurotrophic factor (BDNF) influences the release of dopamine (DA) in the ventral striatum (VST), while catechol-O-methyltransferase (COMT) impacts DA availability in the prefrontal cortex (PFC). ⋯ Specifically, BDNF Val66Met impacted the VST-PFC functional connectivity in an inverted U-shaped in COMT Met carriers, while COMT Val homozygotes displayed a U-shaped. These data may be helpful elucidating the mechanism of the interaction between BDNF and COMT on the cognitive functions that are based in the frontostriatal system.
-
Recent research suggests that long-interval intracortical inhibition (LICI) is followed by a transitory period of late cortical disinhibition (LCD) that can even lead to a net increase in cortical excitability. The relationship between LICI/LCD and voluntary drive remains poorly understood. Our study aims at investigating the influence of index abduction on LICI and LCD in an actively engaged muscle and a neighboring muscle, while varying the intensity of the conditioning stimulus (CS). ⋯ No post-LICI facilitation was observed at rest - even when the CS intensity was set to 160% RMT. In contrast, long-interval intracortical facilitation (LICF) was observed in the quiescent ADM when FDI was active. LICF may then be associated with voluntary activity albeit with lack of topographic specificity.
-
Anatomical studies have demonstrated that hypocretinergic and GABAergic neurons innervate cells in the nucleus pontis oralis (NPO), a nucleus responsible for the generation of active (rapid eye movement (REM)) sleep (AS) and wakefulness (W). Behavioral and electrophysiological studies have shown that hypocretinergic and GABAergic processes in the NPO are involved in the generation of AS as well as W. An increase in hypocretin in the NPO is associated with both AS and W, whereas GABA levels in the NPO are elevated during W. ⋯ In addition, hypocretin-1 also blocked GABAergic inhibition of EPSPs evoked by stimulation of the laterodorsal tegmental nucleus. These data indicate that hypocretin and GABA function within the context of a neuronal gate that controls the activity of AS-on neurons. Therefore, we suggest that the occurrence of either AS or W depends upon interactions between hypocretinergic and GABAergic processes as well as inputs from other sites that project to AS-on neurons in the NPO.
-
Aging is accompanied by a complicated pattern of changes in the brain organization and often by alterations in specific memory functions. One of the brain activities with important role in the process of memory consolidation is thought to be the hippocampus activity of sharp waves and ripple oscillation (SWRs). Using field recordings from the CA1 area of hippocampal slices we compared SWRs as well as single pyramidal cell activity between adult (3-6-month old) and old (24-34-month old) Wistar rats. ⋯ CPP increased the postsynaptic excitability and the paired-pulse inhibition in slices from both adult and old rats similarly while nifedipine increased the postsynaptic excitability only in slices from adult rats. We propose that the tendency of the aged hippocampus to generate long sequences of SWR events might represent the consequence of homeostatic mechanisms that adaptively try to compensate the impairment in the ripple oscillation in order to maintain the behavioral outcome efficient in the old individuals. The age-dependent alterations in the firing mode of pyramidal cells might underlie to some extent the changes in ripples that occur in old animals.
-
Exposure to early-life inflammation results in time-of-challenge-dependent changes in both brain and behavior. The consequences of this neural and behavioral reprogramming are most often reported in adulthood. However, the trajectory for the expression of these various changes is not well delineated, particularly between the juvenile and adult phases of development. ⋯ Moreover, these males had decreased prefrontal cortex levels of glutathione at P40, which was normalized in adult animals. Notably, EE appeared to offer some protection against the consequences of inflammation on juvenile social behavior and fully prevented reduced glutathione levels in the juvenile prefrontal cortex. Combined, these time-dependent effects provide evidence that early-life inflammation interacts with other developmental variables, specifically puberty and EE, in the expression (and prevention) of select behavioral and molecular programs.