Neuroscience
-
Brain-derived neurotrophic factor (BDNF) plays a key role in neuronal development, synaptic plasticity, and the central control of energy homeostasis. Peripheral metabolic signals such as leptin and glucose regulate hypothalamic BDNF gene expression. However, the effects of long-term hyperglycemia and/or hyperinsulinemia on BDNF mRNA levels in the hypothalamus and other brain regions where BDNF regulates physiological functions have not been investigated. ⋯ Plasma BDNF concentrations were not changed by any of the treatments. Our results suggest that hyperinsulinemia alone does not affect BDNF mRNA expression in the hypothalamus, hippocampus, or pituitary. Our study is the first to distinguish that within the hypothalamus, prolonged high glucose levels in non-fasted rats regulates BDNF gene expression in a brain nuclei-specific fashion.
-
The aim of this study is to determine how pitch acceleration rates within and outside the normal pitch range may influence latency and amplitude of cortical pitch-specific responses (CPR) as a function of language experience (Chinese, English). Responses were elicited from a set of four pitch stimuli chosen to represent a range of acceleration rates (two each inside and outside the normal voice range) imposed on the high rising Mandarin Tone 2. Pitch-relevant neural activity, as reflected in the latency and amplitude of scalp-recorded CPR components, varied depending on language-experience and pitch acceleration of dynamic, time-varying pitch contours. ⋯ Only over the right temporal site was amplitude greater in the Chinese group relative to the English. These findings may suggest that the neural mechanism(s) underlying processing of pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to acceleration in just those rising pitch contours that fall within the bounds of one's native language. More broadly, enhancement of native pitch stimuli and stronger rightward asymmetry of CPR components in the Chinese group is consistent with the notion that long-term experience shapes adaptive, distributed hierarchical pitch processing in the auditory cortex, and reflects an interaction with higher order, extrasensory processes beyond the sensory memory trace.
-
Neuronal differentiation is a critical developmental process that determines accurate synaptic connection and circuit wiring. A wide variety of naturally occurring compounds have been shown as promising drug leads for the generation and differentiation of neurons. Here we report that a diarylheptanoid from the plant Alpinia officinarum, 7-(4-hydroxyphenyl)-1-phenyl-4E-hepten-3-one (Cpd 1), exhibited potent activities in neuronal differentiation and neurite outgrowth. ⋯ We showed that the effects of Cpd 1 on neuronal differentiation and neurite growth were specifically dependent on the activation of extracellular signal-regulated kinases (ERKs) and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways. Importantly, intraperitoneal administration of Cpd 1 promoted the differentiation of new-born progenitor cells into mature neurons in the adult hippocampal dentate gyrus. Collectively, this study identifies a naturally occurring diarylheptanoid with beneficial effects on neuronal differentiation and neurite outgrowth in vitro and in vivo.
-
Previous studies have shown that glial cell line-derived neurotrophic factor (GDNF) exerts significant neuroprotective effects on substantia nigra (SN) neurons in the rat 6-hydroxydopamine (6-OHDA) model of Parkinson's disease (PD). In this study we used enzyme-linked immunosorbent assay (ELISA) to determine GDNF brain levels and distribution to target regions (i.e. striatum and SN) following intranasal administration of GDNF at different time points after administration. Brain levels increased significantly within 1h following a single 50-μg dose of GDNF in a liposomal formulation, returning to baseline by 24h. ⋯ In a third study, autoradiography was performed on brain sections taken 1h after intranasal (125)I-labeled GDNF. Radioactivity was detected throughout the brain along the rostral-to-caudal axis, indicating that nasally administered GDNF can reach target areas. Collectively, these results demonstrate that intranasal administration of GDNF in liposomes or PBS achieves significant increases in GDNF in target brain areas, supporting use of intranasal administration as a non-invasive means of delivering GDNF to the brain to protect dopamine neurons and arrest disease progression in PD.
-
Receptor binding studies have shown that the density of mu opioid receptors (MORs) in the basolateral amygdala is among the highest in the brain. Activation of these receptors in the basolateral amygdala is critical for stress-induced analgesia, memory consolidation of aversive events, and stress adaptation. Despite the importance of MORs in these stress-related functions, little is known about the neural circuits that are modulated by amygdalar MORs. ⋯ The main targets of symmetrical (inhibitory and/or neuromodulatory) synapses were dendritic shafts, many of which were MOR+, but some of these terminals formed synapses with somata or spines. All of our observations were consistent with the few electrophysiological studies which have been performed on MOR activation in the basolateral amygdala. Collectively, these findings suggest that MORs may be important for filtering out weak excitatory inputs to PNs, allowing only strong inputs or synchronous inputs to influence pyramidal neuronal firing.