Neuroscience
-
Transient receptor potential melastatin 8 (TRPM8) is activated by innocuous cool and noxious cold and plays a crucial role in cold-induced acute pain and pain hypersensitivity. To help understand the mechanism of TRPM8-mediated cold perception under normal and pathologic conditions, we used light microscopic immunohistochemistry and Western blot analysis in mice expressing a genetically encoded axonal tracer in TRPM8-positive (+) neurons. We investigated the coexpression of TRPM8 and vesicular glutamate transporter 1 (VGLUT1) and VGLUT2 in the trigeminal ganglion (TG) and the dental pulp before and after inducing pulpal inflammation. ⋯ TRPM8+ axons were dense in the pulp horn and peripheral pulp and also frequently observed in the dentinal tubules. Following pulpal inflammation, the proportion of VGLUT2+ and of VGLUT2+/TRPM8+ neurons increased significantly, whereas that of TRPM8+ neurons remained unchanged. Our findings suggest the existence of VGLUT2 (but not VGLUT1)-mediated glutamate signaling in TRPM8+ neurons possibly underlying the cold-induced acute pain and hypersensitivity to cold following pulpal inflammation.
-
Receptor binding studies have shown that the density of mu opioid receptors (MORs) in the basolateral amygdala is among the highest in the brain. Activation of these receptors in the basolateral amygdala is critical for stress-induced analgesia, memory consolidation of aversive events, and stress adaptation. Despite the importance of MORs in these stress-related functions, little is known about the neural circuits that are modulated by amygdalar MORs. ⋯ The main targets of symmetrical (inhibitory and/or neuromodulatory) synapses were dendritic shafts, many of which were MOR+, but some of these terminals formed synapses with somata or spines. All of our observations were consistent with the few electrophysiological studies which have been performed on MOR activation in the basolateral amygdala. Collectively, these findings suggest that MORs may be important for filtering out weak excitatory inputs to PNs, allowing only strong inputs or synchronous inputs to influence pyramidal neuronal firing.
-
The type 1 equilibrative nucleoside transporter (ENT1) is implicated in regulating levels of extracellular adenosine ([AD]ex). In the basal forebrain (BF) levels of [AD]ex increase during wakefulness and closely correspond to the increases in the electroencephalogram (EEG) delta (0.75-4.5Hz) activity (NRδ) during subsequent non-rapid eye movement sleep (NREMS). Thus in the BF, [AD]ex serves as a biochemical marker of sleep homeostasis. ⋯ Perfusion of low dose of adenosine into BF not only strengthened the Wθ-NRδ relationship, but also increased NREMS to match with the WT littermates suggesting decreased [AD]ex in ENT1KO mice. However, the SD-induced [AD]ex increase in the BF and the linear correlation between the EEG markers of sleep homeostasis were unaffected in ENT1KO mice suggesting that during SD, sources other than ENT1 contribute to increase in [AD]ex. Our data provide evidence for a differential regulation of wakefulness-associated [AD]ex during spontaneous vs prolonged waking.
-
Non-physical balance training has demonstrated to be efficient to improve postural control in young people. However, little is known about the potential to increase corticospinal excitability by mental simulation in lower leg muscles. Mental simulation of isolated, voluntary contractions of limb muscles increase corticospinal excitability but more automated tasks like walking seem to have no or only minor effects on motor-evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS). ⋯ The current results demonstrate that corticospinal excitability during mental simulation of balance tasks is influenced by both the type of mental simulation and the task difficulty. As H-reflexes and background EMG were not modulated, it may be argued that changes in excitability of the primary motor cortex were responsible for the MEP modulation. From a functional point of view, our findings suggest best training/rehabilitation effects when combining MI with AO during challenging postural tasks.
-
Previous studies have shown that glial cell line-derived neurotrophic factor (GDNF) exerts significant neuroprotective effects on substantia nigra (SN) neurons in the rat 6-hydroxydopamine (6-OHDA) model of Parkinson's disease (PD). In this study we used enzyme-linked immunosorbent assay (ELISA) to determine GDNF brain levels and distribution to target regions (i.e. striatum and SN) following intranasal administration of GDNF at different time points after administration. Brain levels increased significantly within 1h following a single 50-μg dose of GDNF in a liposomal formulation, returning to baseline by 24h. ⋯ In a third study, autoradiography was performed on brain sections taken 1h after intranasal (125)I-labeled GDNF. Radioactivity was detected throughout the brain along the rostral-to-caudal axis, indicating that nasally administered GDNF can reach target areas. Collectively, these results demonstrate that intranasal administration of GDNF in liposomes or PBS achieves significant increases in GDNF in target brain areas, supporting use of intranasal administration as a non-invasive means of delivering GDNF to the brain to protect dopamine neurons and arrest disease progression in PD.