Neuroscience
-
Intrathecal delivery of glial cell line-derived neurotrophic factor (GDNF) reverses mechanical allodynia after 5th lumbar (L5) spinal nerve ligation (SNL). However, the molecular mechanism behind this process is not fully understood. Following sciatic nerve injury, primary afferent neurons in the injured dorsal root ganglion (DRG) begin to express neuropeptide Y (NPY) that is absent in normal DRG. ⋯ NPY could facilitate touch-sense processing by Y1 receptor in the gracile nucleus after peripheral nerve injury. GDNF may exert anti-allodynic effects through mitigation of this NPY up-regulation. The effectiveness of delayed treatment further indicates the therapeutic potential of GDNF on neuropathic pain.
-
The subplate is a transient layer between the cortical plate and intermediate zone in the developing cortex. Thalamo-cortical axons form temporary synapses on subplate neurons (SPns) before invading the cortical plate. Neuronal activity within the subplate is of critical importance for the development of neocortical circuits and architecture. ⋯ In the presence of SNAP-5114 CGP55845 did not influence GABAergic transmission, indicating that GABABRs are not activated any longer. We conclude that in the subplate GAT-2/3 operates in reverse mode. GABA released via GAT-2/3 activates presynaptic GABABRs on GABAergic synapses and tonically inhibits GABAergic inputs on SPns.
-
Prenatal stress (PS) can induce several long-lasting behavioral and molecular abnormalities in rats. It can also be considered as a risk factor for many psychiatric diseases like schizophrenia, depression or PTSD and predispose to addiction. In this study, we investigated the effect of prenatal stress on the reinforcing properties of nicotine in the CPP paradigm. ⋯ We found that prenatally stressed rats exhibited a greater place preference for the nicotine-paired compartment than the control rats. Moreover, we observed an overexpression of the DRD2 gene in adult offspring stressed in utero and a downregulation in the PS NIC group (PS rats treated with nicotine) compared with their control counterparts (C NIC). These data suggest that maternal stress can permanently alter the offspring's addictive behavior and D2 receptors' expression.
-
Minocycline, a second-generation tetracycline alleviates neuro-inflammation and protects the blood-brain barrier (BBB) in ischemia stroke. However, the effect of minocycline in hypoxia-induced BBB damage is unclear. Here, we have investigated the effect of minocycline under hypoxia and explored its possible underlying mechanisms. ⋯ Minocycline inhibits HIF-1α-mediated cellular responses and protects BBB integrity through SIRT-3/PHD-2 pathway, proving to be a potential drug for the prevention and treatment of hypoxic brain injuries.
-
Physiological significance of synaptic Zn(2+) signaling was examined in the CA1 of young rats. In vivo CA1 long-term potentiation (LTP) was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. In vivo CA1 LTP was inhibited under perfusion with CaEDTA and ZnAF-2DA, extracellular and intracellular Zn(2+) chelators, respectively, suggesting that the influx of extracellular Zn(2+) is required for in vivo CA1 LTP induction. ⋯ Surprisingly, in vivo CA1 LTP was affected under perfusion with 0.1-1μM ZnCl2, unlike the previous data that in vitro CA1 LTP was enhanced in the presence of 1-5μM ZnCl2. The influx of extracellular Zn(2+) into CA1 pyramidal cells has bidirectional action in CA1 LTP. The present study indicates that the degree of extracellular Zn(2+) influx into CA1 neurons is critical for LTP and cognitive performance.