Neuroscience
-
The blood-brain barrier (BBB) is formed by the endothelial cells with specialized tight junctions (TJs) lining the blood vessels and astroglial endfeet surrounding the blood vessels. Although BBB disruption during brain insults leads to vasogenic edema as one of the primary steps in the epileptogenic process, little is known about the molecular and physiological events concerning vasogenic edema formation. ⋯ Indeed, BQ788 (an ETB receptor antagonist) effectively attenuated SE-induced vasogenic edema by inhibiting eNOS-mediated MMP-9 activation and ZO-1 protein degradation in endothelial cells, although astroglial endfeet were detached from endothelial cells. Therefore, we suggest that SE-induced ETB receptor/eNOS-mediated MMP-9 activation may lead to impairments of endothelial cell function via TJ protein degradation, which are involved in vasogenic edema formation independent of perivascular astroglial functions.
-
Studies on sound perception show a tendency to overestimate the distance of an approaching sound source, leading to a faster reaction time compared to a receding sound source. Nevertheless, it is unclear whether motor preparation and execution change according to the perceived sound direction and distance, particularly when the sound falls inside the individual's peripersonal space. In this study we developed several auditory stimuli by means of two speakers, generating sounds moving toward the perceiver but stopping at different distances from her/him. ⋯ Results showed that action initiation was anticipated as a function of sound distance: the closer the sound, the earlier the movement onset, when the sound entered the subject's peripersonal space. Less error for distance estimation was present when the sound was inside the peripersonal space with a modulation in the order of a few centimeters. Overall, our results reveal a link between perceptual bias in sound distance evaluation and peripersonal space, suggesting the presence of motor plan specificity.
-
Prolonged neuronal depression after spreading depression (SD) is followed by a late cellular and synaptic hyperexcitability. Intra- and extracellular recordings of bioelectrical activities were performed in the rodent hippocampus to investigate the role of γ-aminobutyric acid (GABA)-mediated inhibition in the late hyperexcitable state of SD. The effect of KCl-induced negative DC potential shifts was investigated on extracellularly recorded paired-pulse depression (PPD) and bicuculline-induced afterdischarges as well as intracellularly recorded inhibitory post synaptic potentials (IPSPs) in the hippocampal CA1 area. ⋯ Application of low concentrations of bicuculline before the induction of SD enhanced the inhibitory effect of SD on IPSPs. Data indicate the contribution of GABA-mediated inhibition to SD-induced delayed hyperexcitability. Modulation of GABA function in the late hyperexcitability phase of SD may play a role in therapeutic management of SD-related neurological disorders.
-
Alcohol hangover (AH) is defined as the temporary state after alcohol binge-like drinking, starting when ethanol (EtOH) is absent in plasma. Previous data indicate that AH induces mitochondrial dysfunction and free radical production in mouse brain cortex. The aim of this work was to study mitochondrial function and reactive oxygen species production in mouse cerebellum at the onset of AH. ⋯ Related to nitric oxide (NO) metabolism, neuronal nitric oxide synthase (nNOS) protein expression was 52% decreased by the hangover condition compared with control group. No differences were found in cerebellum NO production between control and treated mice. The present work demonstrates that the physiopathological state of AH involves mitochondrial dysfunction in mouse cerebellum showing the long-lasting effects of acute EtOH exposure in the central nervous system.
-
Circadian clocks drive daily rhythms in physiology and behavior which allow organisms to anticipate predictable daily changes in the environment. In most mammals, circadian rhythms result in nocturnal activity patterns although plasticity of the circadian system allows activity patterns to shift to different times of day. Such plasticity is seen when food access is restricted to a few hours during the resting (light) phase resulting in food anticipatory activity (FAA) in the hours preceding food availability. ⋯ Providing a chocolate meal at noon each day increased daytime activity, identifying food timing as a factor capable of altering the daily distribution of activity and rest. These results show that timing of food reward and energetic challenges are both independently sufficient to induce diurnality in nocturnal mammals. FAA observed following timed food restriction is likely the result of an additive effect of distinct regulatory pathways activated by energetic challenges and food reward.