Neuroscience
-
Intrathecal delivery of glial cell line-derived neurotrophic factor (GDNF) reverses mechanical allodynia after 5th lumbar (L5) spinal nerve ligation (SNL). However, the molecular mechanism behind this process is not fully understood. Following sciatic nerve injury, primary afferent neurons in the injured dorsal root ganglion (DRG) begin to express neuropeptide Y (NPY) that is absent in normal DRG. ⋯ NPY could facilitate touch-sense processing by Y1 receptor in the gracile nucleus after peripheral nerve injury. GDNF may exert anti-allodynic effects through mitigation of this NPY up-regulation. The effectiveness of delayed treatment further indicates the therapeutic potential of GDNF on neuropathic pain.
-
The subplate is a transient layer between the cortical plate and intermediate zone in the developing cortex. Thalamo-cortical axons form temporary synapses on subplate neurons (SPns) before invading the cortical plate. Neuronal activity within the subplate is of critical importance for the development of neocortical circuits and architecture. ⋯ In the presence of SNAP-5114 CGP55845 did not influence GABAergic transmission, indicating that GABABRs are not activated any longer. We conclude that in the subplate GAT-2/3 operates in reverse mode. GABA released via GAT-2/3 activates presynaptic GABABRs on GABAergic synapses and tonically inhibits GABAergic inputs on SPns.
-
Human age-related retinal diseases, such as age-related macular degeneration (AMD), are intimately associated with decreased tissue oxygenation and hypoxia. Different antioxidants have been investigated to reverse AMD. In the present study, we describe the antioxidant 17β-estradiol (βE2) and investigate its protective effects on retinal neurons. ⋯ Taken together, these observations suggest that βE2 exerts antioxidative effects following light-induced retinal degeneration potentially via NRF2 activation. This protective mechanism may depend on two pathways: a rapid, non-genomic-type PI3K/AKT response, and a genomic-type ER-dependent response. Our data provide evidence that βE2 is a potentially effective in the treatment of retinal degeneration diseases.
-
Given that adolescence represents a critical moment for shaping adult behavior and may predispose to disease vulnerability later in life, the aim of this study was to find a vulnerable period during adolescence in which hippocampal cell fate regulation was altered by cocaine exposure, and to evaluate the long-term consequences of a cocaine experience during adolescence in affecting hippocampal plasticity and behavioral despair in adulthood. Study I: Male rats were treated with cocaine (15mg/kg, i.p.) or saline for 7 consecutive days during adolescence (early post-natal day (PND) 33-39, mid PND 40-46, late PND 47-53). Hippocampal plasticity (i.e., cell fate regulation, cell genesis) was evaluated 24h after the last treatment dose during the course of adolescence (PND 40, PND 47, PND 54). ⋯ Chronic cocaine during early adolescence dysregulated FADD forms only in the hippocampus (HC), as compared to other brain regions, and during mid adolescence, impaired cell proliferation (Ki-67) and increased PARP-1 cleavage (a cell death maker) in the HC. Interestingly, chronic cocaine exposure during adolescence did not alter the time adult rats spent immobile in the forced swim test. These results suggest that this paradigm of chronic cocaine administration during adolescence did not contribute to the later manifestation of behavioral despair (i.e., one pro-depressive symptom) as measured by the forced swim test in adulthood.
-
Alzheimer's disease (AD) brains exhibit plaques and tangles in association with inflammation. The non-receptor tyrosine kinase Abl is linked to neuro-inflammation in AD. Abl inhibition by nilotinib or bosutinib facilitates amyloid clearance and may decrease inflammation. ⋯ Nilotinib decreased blood and brain cytokines and chemokines and increased CX3CL1. Bosutinib increased brain and blood IL-10 and CX3CL1, suggesting a protective role for soluble CX3CL1. Taken together these data suggest that TKIs regulate systemic and CNS immunity and may be useful treatments in early AD through dual effects on amyloid clearance and immune modulation.