Neuroscience
-
Our previous studies have suggested that surgical lesions of the rat cochlea induce cell proliferation in the cochlear nucleus (CN) that may be related to neurogenesis. The aim of the present study was to further investigate the nature of cell proliferation in the CN, following acoustic trauma that has previously been shown to induce tinnitus in rats. Rats were subjected either to a unilateral acoustic trauma (16-kHz pure tone, 115dB for 1h under anesthesia) or a sham procedure. ⋯ Immunolabeling revealed the BrdU(+ve) cells to co-express Ki-67 and DCX, but not CD-11b. However, there was no difference in DCX expression between sham and exposed animals. The results suggest that DCX-expressing cells in the CN may proliferate in response to acoustic trauma; however, the proportion of cells proliferating and the survival rate of the newborn cells may not support functional neurogenesis in the CN.
-
Schizophrenia is a devastating mental illness. Although its etiology is still largely unknown, strides have been taken throughout the last several decades to elucidate the nature of the neuropathology behind this disorder. The advent of neuroimaging technologies such as computerized axial tomography and magnetic resonance imaging have progressed knowledge about the macroscopic brain changes that occur in schizophrenia, including the characteristic enlarged ventricle size and reductions in gray matter volume, whole-brain volume, and white matter anisotropy. ⋯ This is consistent with neuroimaging data and implicates an altered aging trajectory as a factor in the pathogenesis of schizophrenia. Combined with evidence from other neuroanatomical studies reviewed here, as well as studies in childhood-onset schizophrenia, the evidence converges on a progressive neurodevelopmental model of schizophrenia related to altered neuroplasticity. The evidence also supports a particular vulnerability of inhibitory cortical circuits with markers of interneurons showing some of the more consistent reductions in schizophrenia.
-
The scope of visual attention changes dynamically over time. Although previous research has reported conditions that suppress peripheral visual processing, no prior work has investigated how attention changes in response to the variable emotional content of audiovisual narratives. We used fMRI to test for the suppression of spatially peripheral stimuli and enhancement of narrative-relevant central stimuli at moments when suspense increased in narrative film excerpts. ⋯ Analyses revealed that increasing narrative suspense caused reduced activity in peripheral visual processing regions in the anterior calcarine sulcus and in default mode network nodes. Concurrently, activity increased in central visual processing regions and in frontal and parietal regions recruited for attention and dynamic visual processing. These results provide evidence, using naturalistic stimuli, of dynamic spatial tuning of attention in early visual processing areas due to narrative context.
-
Neuronal differentiation is a critical developmental process that determines accurate synaptic connection and circuit wiring. A wide variety of naturally occurring compounds have been shown as promising drug leads for the generation and differentiation of neurons. Here we report that a diarylheptanoid from the plant Alpinia officinarum, 7-(4-hydroxyphenyl)-1-phenyl-4E-hepten-3-one (Cpd 1), exhibited potent activities in neuronal differentiation and neurite outgrowth. ⋯ We showed that the effects of Cpd 1 on neuronal differentiation and neurite growth were specifically dependent on the activation of extracellular signal-regulated kinases (ERKs) and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways. Importantly, intraperitoneal administration of Cpd 1 promoted the differentiation of new-born progenitor cells into mature neurons in the adult hippocampal dentate gyrus. Collectively, this study identifies a naturally occurring diarylheptanoid with beneficial effects on neuronal differentiation and neurite outgrowth in vitro and in vivo.
-
The hippocampus, a medial temporal lobe structure necessary for the formation of spatial memory, is particularly affected by both normal and pathologic aging. In previous studies, we observed a significant age-related increase in dopaminergic neuron loss in the hypothalamus and the substantia nigra of female rats, which becomes more conspicuous at extreme ages. Here, we extend our studies by assessing spatial memory in 4-6 month-old (young), 26-month-old (old) and 29-32-month-old (senile) Sprague-Dawley female rats as well as the age-related histopathological changes in their dorsal hippocampus. ⋯ Astroglial process length and branching complexity decreased in aged rats. We conclude that while target-seeking activity and learning ability decrease in aged females, spatial memory only declines in the longer-term tests. The reduction in neuroblast number and astroglial arborescence complexity in the dorsal hippocampus are likely to play a role in the cognitive deficits of aging rats.