Neuroscience
-
How gravity influences neural control of arm movements remains under debate. We tested three alternative interpretations suggested by previous research: (1) that muscular control includes two components, tonic which compensates for gravity and phasic which produces the movement; (2) that there is a tendency to exploit gravity to reduce muscle effort; and (3) that there is a tendency to use a trailing pattern of joint control during which either the shoulder or elbow is rotated actively and the other joint rotates predominantly passively, and to exploit gravity for control of the passively rotated joint. A free-stroke drawing task was performed that required production of center-out strokes within a circle while selecting stroke directions randomly. ⋯ To test the three interpretations, we used a kinetic analysis that determined the role of gravitational torque in the production of movement in the preferred directions. The results supported the third interpretation and provided evidence against the first and second interpretation. The trailing pattern has been associated with reduced neural effort for joint coordination, and therefore, we conclude that the major tendency with respect to gravity is to exploit it for simplification of joint coordination.
-
The medial prefrontal cortex (mPFC) plays a key role in higher functions such as memory and attention. In order to demonstrate sensory responses in the mPFC, we used electrophysiological recordings of urethane-anesthetized rats to record somatosensory-evoked potentials (SEPs) or auditory-evoked potentials (AEPs) elicited by whisker deflections and click stimulation, respectively. Contralateral whisker stimulation or auditory stimuli were also applied to study sensory interference in the mPFC. ⋯ Results obtained from retrograde tracer injections in the dorsal and ventral regions of the mPFC indicated that somatosensory and auditory sensory inputs may arrive at the dorsal mPFC through secondary sensory cortical areas, and through the insular and temporal cortical areas. The ventral mPFC may receive sensory information through the strong anatomical connections between the dorsal and ventral mPFC areas. In conclusion, results suggest mPFC plays an important role in sensory processing, which may have important implications in attentional and memory processes.
-
A subpopulation of olivary pretectal nucleus (OPN) neurons fire action potentials in a rhythmic manner with an eruption of activity occurring approximately every two minutes. These infra-slow oscillations depend critically on functional retinal input and are subject to modulation by light. Interestingly, the activity of photoreceptors is necessary for the emergence of the rhythm and while classic photoreceptors (rods and cones) are necessary in darkness and dim light, melanopsin photoreceptors are indispensable in bright light. ⋯ Moreover, the most effective CBX concentration depressed cone-mediated light-induced responses of oscillatory neurons suggesting that CBX is also acting on targets other than GJs. In contrast, intravitreal injection of meclofenamic acid (MFA, 20mM) led to disruption of the rhythm but did not interfere with cone-mediated light-induced responses of oscillatory neurons, implying that MFA is more specific toward GJs than CBX, as suggested before. We conclude that electrical coupling between various types of retinal cells and resultant synchronous firing of retinal ganglion cells is necessary for the generation of infra-slow oscillations in the rat OPN.
-
Epidemiological studies report that infarct size is decreased and stroke outcomes are improved in young females when compared to males. However, mechanistic insight is lacking. We posit that sex-specific differences in glial cell functions occurring immediately after ischemic stroke are a source of dichotomous outcomes. ⋯ When compared to sham, only male mice exhibited an increase in CD11b immunoreactivity after MCA occlusion (P=0.006). We posit that a sex difference in the presence of constitutive CD11b has a role in determining male and female microglia phagocytic responses to ischemia. Taken together, these findings are critical to understanding potential sex differences in glial physiology as well as stroke pathobiology which are foundational for the development of future sex-specific stroke therapies.
-
Single nucleotide polymorphisms (SNPs)-based genotyping using microarray platform is now frequently used to detect copy number variants (CNVs) in the human genome. Here, we report CNVs identified using Illumina Human Omni 2.5M oligonucleotide microarrays in 11 multiplex families with autism spectrum disorder (ASD) referred to Autism Research and Treatment Center (ART) and Madinah Maternity and Children Hospital (MMCH). Of the 11 families, 22 patients with ASD (all males) and their parents, were recruited for the present study. ⋯ This CNV results in deletion of intron 2 of calsyntenin 2 (CLSTN2) encoding synaptic protein calsyntenin 2. CLSTN2 is expressed exclusively in the brain, with high levels occurring in cortical gamma-aminobutyric acid (GABA)ergic interneurons and in medial temporal lobe regions. These results verify the diagnostic relevance of genome-wide small common and rare CNVs and provide further evidence of the high diagnostic yield of microarray for genetic testing in children with ASD.