Neuroscience
-
Brain responses to discrete short sounds have been studied intensively using the event-related potential (ERP) method, in which the electroencephalogram (EEG) signal is divided into epochs time-locked to stimuli of interest. Here we introduce and apply a novel technique which enables one to isolate ERPs in human elicited by continuous music. The ERPs were recorded during listening to a Tango Nuevo piece, a deep techno track and an acoustic lullaby. ⋯ Negative deflation occurring around 100 milliseconds after the stimulus onset (N100) and positive deflation occurring around 200 milliseconds after the stimulus onset (P200) ERP responses to peak changes in the acoustic features were distinguishable and were often largest for Tango Nuevo. In addition to large changes in these musical features, long phases of low values that precede a rapid increase - and that we will call Preceding Low-Feature Phases - followed by a rapid increase enhanced the amplitudes of N100 and P200 responses. These ERP responses resembled those to simpler sounds, making it possible to utilize the tradition of ERP research with naturalistic paradigms.
-
Phantom hand and wrist movements in upper limb amputees are slow but naturally controlled movements.
After limb amputation, patients often wake up with a vivid perception of the presence of the missing limb, called "phantom limb". Phantom limbs have mostly been studied with respect to pain sensation. But patients can experience many other phantom sensations, including voluntary movements. ⋯ Finger extension movements appeared to be 24% faster than finger flexion movements. Neither the number of types of phantom movements that can be executed nor the kinematic characteristics were related to the elapsed time since amputation, highlighting the persistence of post-amputation neural adaptation. We hypothesize that the perceived slowness of phantom movements is related to altered proprioceptive feedback that cannot be recalibrated by lack of visual feedback during phantom movement execution.
-
One common feature of most neurodegenerative diseases, including Alzheimer's disease (AD) and stroke, is the death of neuronal cells. Neuronal cell death is associated with apoptosis, generation of reactive oxygen species and oxidative stress. Neuronal cell death pathways can be reversed by endothelin B receptor agonist, IRL-1620, which was found to enhance neuroprotection by promoting vascular and neuronal growth in a rodent stroke model. ⋯ In the western blot analysis, the expression of the anti-apoptotic marker, BCL-2 was found to be increased, and that of pro-apoptotic marker, BAX was found to be decreased with liposomal IRL-1620. The effects were found to be independent of the NGF levels. Finally the free IRL-1620 was found to cause neuronal outgrowth equivalent to the 75ng/ml NGF treatment.
-
Sox2 (SRY (Sex-determining region Y)-related high mobility group (HMG) box 2) is a transcription factor that serves key roles in controlling the balance between stem cells maintenance and commitment to differentiated lineages throughout the lifetime. Importantly, Sox2 deficiency results in early embryonic lethality whereas the down-regulation of Sox2 expression triggers neurodegeneration in the adult mouse brain. Moreover, Sox2 is decreased in the brain of Alzheimer's disease (AD) patients and co localizes with the β-amyloid precursor protein (βAPP) in stem cells. ⋯ In addition, we demonstrate that Sox2 is a potent activator of the non amyloidogenic processing of βAPP as shown by the Sox2-dependent augmentation of ADAM10 catalytic activity, immunoreactivity, promoter transactivation and mRNA levels with no modification of the activity and the expression of the β-secretase BACE1. Finally, the fact that γ-secretase inhibition induces an increase of ADAM10 protein levels in SH-SY5Y cells further supports the occurrence of functional AICD/Sox2/ADAM10 interactions. Altogether, our study identifies and characterizes new functional cross-talks between Sox2 and proteins involved in AD, thereby adding support to the view that Sox2 likely behaves as a protective factor during the development of this neurodegenerative disease.
-
MicroRNAs (miRNAs) inhibit RNA targets and may contribute to postpartum central nervous system (CNS) gene expression changes, although this has never been tested. In the present study, we directly evaluated miRNA levels using RNA sequencing during reproduction in female mice in the lateral septum (LS). We found the reliable and robust changes of miRNAs away from the virgin stage at the three other stages, namely pregnant, day 1 postpartum, and day 8 postpartum. ⋯ Previously published postpartum LS gene expression changes were enrichment for LS miRNA targets, as expected. Surprisingly, postpartum gene expression changes from other regions were also enriched against LS miRNA targets, suggesting a core group of miRNAs may act across the CNS during reproduction. Together, we directly examine miRNAs and find significant alterations in the postpartum brain.