Neuroscience
-
Afferent connections to the sensory inner (IHCs) and outer hair cells (OHCs) in the cochlea refine and functionally mature during the thyroid hormone (TH)-critical period of inner ear development that occurs perinatally in rodents. In this study, we investigated the effects of hypothyroidism on afferent type II innervation to outer hair cells using the Snell dwarf mouse (Pit1(dw)). Using a transgenic approach to specifically label type II spiral ganglion neurons (SGNs), we found that lack of TH causes persistence of excess type II SGN connections to the OHCs, as well as continued expression of the hair cell functional marker, otoferlin (OTOF), in the OHCs beyond the maturation period. ⋯ Supplementing with TH during the early postnatal period from postnatal day (P) 3 to P4 reversed the defect in type II SGN pruning but did not alter OTOF expression. Our results show that hypothyroidism causes a defect in the large-scale pruning of afferent type II SGNs in the cochlea, and a delay in efferent attachment and the maturation of OTOF expression. Our data suggest that the state of maturation of hair cells, as determined by OTOF expression, may not regulate the pruning of their afferent innervation.
-
High levels of chronic stress or stress hormones are associated with depressive-like behavior in animal models. However, slight elevations in corticosterone (CORT) - the major stress hormone in rodents - have also been associated with improved performances, albeit in a sex-dependent manner. Some of the discrepancies in the literature regarding the effects of high CORT levels may be due to different administrations methods. ⋯ In addition, only the injection group exhibited higher levels of immobility in the FST. Interestingly, animals receiving CORT via injection or drinking water had lower numbers of doublecortin-positive cells in the ventral DG one week after the last CORT administration compared to animals implanted with a CORT pellet. These results will contribute to the growing literature on the effects of chronic CORT exposure and may help to clarify some of the discrepancies among previous studies, particularly in females.
-
In this study, we examined the effect of bilateral intra-basolateral amygdala (intra-BLA) microinjections of dopamine receptor agents on amnesia induced by a β-carboline alkaloid, harmaline in mice. We used a step-down method to assess memory and then, hole-board method to assess exploratory behaviors. The results showed that pre-training intra-BLA injections of dopamine D1 receptor antagonist and agonist (SCH23390 (0.5μg/mouse) and SKF38393 (0.5μg/mouse), respectively) impaired memory acquisition. ⋯ Conversely, pre-training intra-BLA injection of SKF38393 (0.1μg/mouse), sulpiride (0.25μg/mouse) or quinpirole (0.1μg/mouse) reversed harmaline (1mg/kg, i.p.)-induced amnesia. Furthermore, all above doses of drugs had no effect on locomotor activity. In conclusion, the dopamine D1 and D2 receptors of the BLA may be involved in the impairment of memory acquisition induced by harmaline.
-
Delivering effective commands in the nervous systems require a temporal integration of neural activities such as synchronous firing. Although sympathetic nerve discharges are characterized by synchronous firing, its temporal structures and how it is modulated are largely unknown. This study used a collagenase-dissociated splanchnic sympathetic nerve-thoracic spinal cord preparation of neonatal rats in vitro as an experimental model. ⋯ Antagonist-induced enhancement and attenuation of correlated firing were demonstrated by a respective increase and decrease of the peak probability of the cross-correlograms. Heterogeneity in antagonistic responses suggests that the inhibitory neurotransmission mediated by GABA(A) and glycine receptors is not essential for but can serve as a neural substrate to modulate synchronous firing behaviors. Plausible neural mechanisms were proposed to explain the temporal structures of correlated firing between sympathetic fibers.