Neuroscience
-
Microglial activation results in profound morphological, functional and gene expression changes that affect the pro- and anti-inflammatory mechanisms of these cells. Although statins have beneficial effects on inflammation, they have not been thoroughly investigated for their ability to affect microglial functions. Therefore the effects of rosuvastatin, one of the most commonly prescribed drugs in cardiovascular therapy, either alone or in combination with bacterial lipopolysaccharide (LPS), were profiled in pure microglial cultures derived from the forebrains of 18-day-old rat embryos. ⋯ Finally, rosuvastatin beneficially and differentially affected the expression of a number of inflammation-related genes in LPS-challenged cells by inhibiting numerous pro-inflammatory and stimulating several anti-inflammatory genes. Since the microglia could elicit pro-inflammatory responses leading to neurodegeneration, it is important to attenuate such mechanisms and promote anti-inflammatory properties, and develop prophylactic therapies. By beneficially regulating both pro- and anti-inflammatory microglial functions, rosuvastatin may be considered as a prophylactic agent in the prevention of inflammation-related neurological disorders.
-
Following brain ischemia reperfusion (IR), the dramatic increase in adenosine activates A2AR to induce further neuronal damage. Noteworthy, A2A antagonists have proven efficacious in halting IR injury, however, the detailed downstream signaling remains elusive. To this end, the present study aimed to investigate the possible involvement of phospho-extracellular signal-regulated kinase (pERK1/2) pathway in mediating protection afforded by the central A2A blockade. ⋯ Consequent to pERK1/2 inhibition, reduced hippocampal microglial activation, glial tumor necrosis factor-alpha (TNF-α) and brain-derived neurotropic factor (BDNF) expression, glutamate (Glu), inducible nitric oxide synthase (iNOS) and thiobarbituric acid reactive substances (TBARS) were evident in animals receiving SCH58261. Additionally, the anti-inflammatory cytokine interleukin-10 (IL-10) increased following nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). Taken all together, these events suppressed apoptotic pathways via a reduction in cytochrome c (Cyt. c) as well as caspase-3 supporting a crucial role for pERK1/2 inhibition in consequent reduction of inflammatory and excitotoxic cascades as well as correction of the redox imbalance.
-
Our recent study has indicated that a moderate lesion induced by bilateral 6-hydroxydopamine (6-OHDA) injections into the ventrolateral region of the caudate-putamen (CP) in rats, modeling preclinical stages of Parkinson's disease, induces a "depressive-like" behavior which is reversed by chronic treatment with pramipexole (PRA). The aim of the present study was to examine the influence of the above lesion and chronic PRA treatment on binding to the serotonin transporter (SERT) in different brain regions. As before, 6-OHDA (15 μg/2.5 μl) was administered bilaterally into the CP. ⋯ Chronic PRA did not influence DAT binding but reduced SERT binding in the above structures, and deepened the lesion-induced losses in the core region of the NAC, SN, VTA and PFCX. The present study indicates that both the lesion of dopaminergic neurons and chronic PRA administration induce adaptive down-regulation of SERT binding. Moreover, although involvement of stimulation of dopaminergic transmission by chronic PRA in its "antidepressant" effect seems to be prevalent, additional contribution of SERT inhibition cannot be excluded.
-
Nucleobindin 1 (NUCB1; also known as CALNUC or NUC) is a putative DNA- and calcium-binding protein and exhibits significant structural homology with the protein nucleobindin 2 (NUCB2; also known as nesfatin). While NUCB2 has been mapped in detail in the brain and implicated in the hypothalamic control of energy metabolism, no study has to date addressed the presence of NUCB1 in the central nervous system. Here we have explored the expression and distribution of NUCB1 in the rat brain and spinal cord, using RT-PCR, immunofluorescence and in situ hybridization. ⋯ Further examination of the subcellular distribution of NUCB1 using organelle-specific markers revealed its consistent presence in the Golgi apparatus. These findings identify NUCB1 as a novel pan-neuronal marker. Along with the recent demonstration of broad expression of the protein in endocrine cells, the present results suggest that NUCB1 may play a role in spatiotemporal calcium handling in signaling cells.
-
Transcranial magnetic stimulation (TMS) of the motor cortex during voluntary contractions elicits electrophysiological and mechanical responses in the target muscle. The effect of different TMS intensities on exercise-induced changes in TMS-elicited variables is unknown, impairing data interpretation. This study aimed to investigate TMS intensity effects on maximal voluntary activation (VATMS), motor-evoked potentials (MEPs), and silent periods (SPs) in the quadriceps muscles before, during, and after exhaustive isometric exercise. ⋯ VATMS assessed at I75 tended to be lower than at I100. TMS intensity affects exercise-induced changes in MEP/Mmax (only when measured at absolute force level), SPs, and VATMS. These results indicate a single TMS intensity assessing maximal voluntary activation and exercise-induced changes in corticomotoneuronal excitability/inhibition may be inappropriate.