Neuroscience
-
Alzheimer's disease (AD) is one of the most common causes of dementia. Although the exact mechanisms of AD are not entirely clear, the impairment in adult hippocampal neurogenesis has been reported to play a role in AD. To assess the relationship between AD and neurogenesis, we studied APP/PS1/nestin-green fluorescent protein (GFP) triple transgenic mice, a well-characterized mouse model of AD, which express GFP under the control of the nestin promoter. ⋯ However, the number of maturate neurons (NeuN) was not significantly different between AD mice and wild-type controls, and NeuN changed only slightly with age. By Golgi-Cox staining, the morphologies of dendrites were observed, and significant differences existed between AD mice and wild-type controls. These results suggest that AD has a far-reaching influence on the regulation of adult hippocampal neurogenesis, leading to a gradual decrease in the generation of neural progenitors (NPCs), and inhibition of the differentiation and maturation of neurons.
-
Spike and wave discharges (SWDs), generated within cortico-thalamo-cortical networks, are the electroencephalographic biomarker of absence epilepsy. The current work aims to identify mechanisms of SWD initiation, maintenance and termination by the analyses of dynamics and directionality of mutual interactions between the neocortex and various functionally different thalamic nuclei. ⋯ The initiation of SWD is due to a gradual increase in intracortical coupling, followed by a selective increase in first unidirectional and later bidirectional coupling between the cortex and thalamus and also intrathalamically. Once the network is oscillating, coupling decreases in most of the channel pairs, although the cortex keeps its influence on the cRTN. The SWD is dampened by a gradual increase in coupling strength and in the number of channel pairs that influence each other; the latter might represent an endogenous brake of SWDs.
-
OSO paradigm - a rapid behavioral screening method for acute psychosocial stress reactivity in mice.
Chronic psychosocial stress is an important environmental risk factor for the development of psychiatric diseases. However, studying the impact of chronic psychosocial stress in mice is time consuming and thus not optimally suited to 'screen' increasing numbers of genetically manipulated mouse models for psychiatric endophenotypes. Moreover, many studies focus on restraint stress, a strong physical stressor with limited relevance for psychiatric disorders. ⋯ Transgenic mice with neuronal overexpression of Neuregulin-1 (Nrg1) type III showed increased risk-taking behavior after acute stress exposure suggesting that NRG1 dysfunction is associated with altered affective behavior. In contrast, Tcf4 transgenic mice displayed a normal stress response which is in line with the postulated predominant contribution of TCF4 to cognitive deficits of SZ. In conclusion, the OSO paradigm allows for rapid screening of selected psychosocial stress-induced behavioral endophenotypes in mouse models of psychiatric diseases.
-
Microglial activation results in profound morphological, functional and gene expression changes that affect the pro- and anti-inflammatory mechanisms of these cells. Although statins have beneficial effects on inflammation, they have not been thoroughly investigated for their ability to affect microglial functions. Therefore the effects of rosuvastatin, one of the most commonly prescribed drugs in cardiovascular therapy, either alone or in combination with bacterial lipopolysaccharide (LPS), were profiled in pure microglial cultures derived from the forebrains of 18-day-old rat embryos. ⋯ Finally, rosuvastatin beneficially and differentially affected the expression of a number of inflammation-related genes in LPS-challenged cells by inhibiting numerous pro-inflammatory and stimulating several anti-inflammatory genes. Since the microglia could elicit pro-inflammatory responses leading to neurodegeneration, it is important to attenuate such mechanisms and promote anti-inflammatory properties, and develop prophylactic therapies. By beneficially regulating both pro- and anti-inflammatory microglial functions, rosuvastatin may be considered as a prophylactic agent in the prevention of inflammation-related neurological disorders.
-
Central blockade of mineralocorticoid receptors (MRs) or angiotensin II type 1 receptors (AT1Rs) attenuates aldosterone (aldo)-salt induced hypertension. We examined the role of the subfornical organ (SFO), aldo synthesized locally in the brain, and MR and AT1R specifically in the paraventricular nucleus (PVN) in aldo-salt hypertension. Wistar rats were treated with subcutaneous aldo (1μg/h) plus saline as drinking fluid, and gene expression was assessed by real-time qPCR. ⋯ SFO lesion, blockade of brain AS or MR, or knockdown of MR or AT1R in the PVN similarly attenuated aldosterone-induced saline intake by ∼50% and hypertension by ∼70%. These results suggest that an increase in circulating aldosterone may via MR and AT1R in the SFO increase local aldosterone production in hypothalamic nuclei such as the SON and PVN, and via MR enhance AT1R signaling in the PVN. This central aldosterone-MR-AT1R neuro-modulatory pathway appears to play a major role in the progressive hypertension.