Neuroscience
-
Amphetamine (AMPH) exposure leads to changes in behavior and dopamine receptor function in the prefrontal cortex (PFC). Since dopamine plays an important role in regulating GABAergic transmission in the PFC, we investigated if AMPH exposure induces long-lasting changes in dopamine's ability to modulate inhibitory transmission in the PFC as well as whether the effects of AMPH differed depending on the age of exposure. Male Sprague-Dawley rats were given saline or 3 mg/kg AMPH (i.p.) repeatedly during adolescence or adulthood and following a withdrawal period of up to 5 weeks (Experiment 1) or up to 14 weeks (Experiment 2), they were sacrificed for in vitro whole-cell recordings in layer V/VI of the medial PFC. ⋯ These effects did not depend on age of exposure, were mediated at least partially by a reduced sensitivity of D1 receptors in AMPH-treated rats, and were associated with an enhanced behavioral response to the drug in a separate group of rats given an AMPH challenge following the longest withdrawal period. Together, these data reveal a prolonged effect of AMPH exposure on medial PFC function that persisted for up to 14 weeks in adolescent-exposed animals. These long-lasting neurophysiological changes may be a contributing mechanism to the behavioral consequences that have been observed in those with a history of amphetamine abuse.
-
Structural plasticity of dendritic spines, which underlies higher brain functions including learning and memory, is dynamically regulated by the actin cytoskeleton and its associated proteins. Drebrin A is an F-actin-binding protein preferentially expressed in the brain and localized in the dendritic spines of mature neurons. Isoform conversion from drebrin E to drebrin A and accumulation of the latter in dendritic spines occurs during synapse maturation. ⋯ In parallel with this age-dependent impairment, DAKO mice exhibited impaired hippocampus-dependent fear learning in an age-dependent manner; the impairment was evident in adult mice, but not in adolescents. In addition, histological investigation revealed that the spine length of the apical dendrite of CA1 pyramidal cells was significantly longer in adult DAKO mice than in wild-type mice. Our data indicate that the roles of drebrin E and drebrin A in brain function are different from each other, that the isoform conversion of drebrin is critical, and that drebrin A is indispensable for normal synaptic plasticity and hippocampus-dependent fear memory in the adult brain.
-
Inter-alpha Inhibitor Proteins (IAIPs) are a family of related serine protease inhibitors. IAIPs are important components of the systemic innate immune system. We have identified endogenous IAIPs in the central nervous system (CNS) of sheep during development and shown that treatment with IAIPs reduces neuronal cell death and improves behavioral outcomes in neonatal rats after hypoxic-ischemic brain injury. ⋯ Immunoreactivity was found in neurons, microglia, astrocytes and oligodendroglia in multiple brain regions including cortex and hippocampus, as well as within both the ependyma and choroid plexus. Our findings suggest that IAIPs are endogenous proteins expressed in a wide variety of cell types and regions both in vitro and in vivo in rodent CNS. We speculate that endogenous IAIPs may represent endogenous neuroprotective immunomodulatory proteins within the CNS.
-
Exposure to ethanol during fetal development produces long-lasting neurobehavioral deficits caused by functional alterations in neuronal circuits across multiple brain regions. Therapeutic interventions currently used to treat these deficits are only partially efficacious, which is a consequence of limited understanding of the mechanism of action of ethanol. Here, we describe a novel effect of ethanol in the developing brain. ⋯ Analysis with the Catwalk test revealed subtle deficits in motor function during adolescence/young adulthood. In conclusion, our study provides additional evidence linking developmental ethanol exposure with alterations in the fetal cerebral vasculature. Given that this effect was observed at moderate levels of ethanol exposure, our findings lend additional support to the recommendation that women abstain from consuming alcoholic beverages during pregnancy.
-
Engrailed-2 (En2), a homeodomain transcription factor involved in regionalization and patterning of the midbrain and hindbrain regions has been associated to autism spectrum disorders (ASDs). En2 knockout (En2(-/-)) mice show ASD-like features accompanied by a significant loss of GABAergic subpopulations in the hippocampus and neocortex. Brain-derived neurotrophic factor (BDNF) is a crucial factor for the postnatal development of forebrain GABAergic neurons, and altered GABA signaling has been hypothesized to underlie the symptoms of ASD. ⋯ Increased levels of phosphorylated TrkB and decreased levels of p75 receptor were also detected in the neocortex of mutant mice. Accordingly, the expression of low density lipoprotein receptor (LDLR) and RhoA, two genes regulated via p75 was significantly altered in forebrain areas of mutant mice. These data indicate that BDNF signaling alterations might be involved in the anatomical changes observed in the En2(-/-) forebrain and suggest a pathogenic role of altered BDNF signaling in this mouse model of ASD.