Neuroscience
-
Increasing evidence suggests that microRNAs (miRs) play a significant role in the pathogenesis of Parkinson's disease (PD). MiR-133b, which is significantly decreased in the PD midbrain, has recently been shown to promote neurite outgrowth and enhance neural functional recovery. However, the role of miR-133b in PD has not been clearly established. ⋯ Moreover, we demonstrated that the induced expression of miR-133b could inhibit α-synuclein, which is critically involved in the pathological process of PD. Furthermore, we found that overexpression of miR-133b abrogated the MPP(+)-induced decrease in the Bcl-2/Bax ratio and upregulated phosphorylated Akt (p-Akt), which is a pro-survival kinase. Together these findings reveal novel roles for miR-133b in the pathogenesis of PD and provide new therapeutic avenues for the treatment of the disease.
-
Huntington's Disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine expansion in the huntingtin protein. The YAC128 mouse model of HD expresses the full-length human huntingtin protein with 128 CAG repeats and replicates the phenotype and neurodegeneration that occur in HD. Several studies have implicated a role for neuroinflammation in HD pathogenesis. ⋯ We found elevated MMP levels in HD CSF, and MMP levels correlate with disease severity in HD. These data support a novel role for MMPs and microglial activation in HD pathogenesis. With an improved understanding of the specific cellular processes involved in HD neuroinflammation, novel therapeutic agents targeting these processes can be developed and hold great promise in the treatment of HD.
-
Anesthesia profoundly impacts peri-infarct depolarizations (PIDs), but only one prior report has described their monitoring during experimental stroke in awake animals. Since temporal patterns of PID occurrence are model specific, the current study examined PID incidence during focal ischemia in the awake Spontaneously Hypertensive Rat (SHR), and documented the impact of both prior and concurrent isoflurane anesthesia. For awake recordings, electrodes were implanted under isoflurane anesthesia 1day to 5weeks prior to occlusion surgery. ⋯ PIDs persisted up to 36h after transient occlusions. These results differ markedly from the one previous report of such monitoring in awake Sprague-Dawley rats, which found an extended biphasic PID time course during 24h after both permanent and transient filament occlusions. PID occurrence closely reflects the time course of infarct progression in the respective models, and may be more useful than absolute PID number as an index of ongoing pathology.
-
In humans, bromocriptine (BRO) is used as a treatment for many disorders, such as prolactinomas, even during pregnancy and lactation. Previously we demonstrated that maternal BRO treatment at the end of lactation programs offspring for obesity and several endocrine dysfunctions. Here, we studied the long-term effects of direct BRO injection in neonatal Wistar rats on their dopaminergic pathway, anxiety-like behavior and locomotor activity at adulthood. ⋯ This group had lower POMC in the ARC, lower TH in the VTA and lower DAT in the NAc. BRO-treated animals showed less anxiety-like behaviors in the EPM. Thus, neonatal BRO injection, depending on the time of treatment, leads to different long-term dysfunctions in the dopaminergic reward system, food intake behavior and anxiety levels, findings that could be partially due to PRL and POMC changes.
-
The Forkead Box G1 (FOXG1 in humans, Foxg1 in mice) gene encodes for a DNA-binding transcription factor, essential for the development of the telencephalon in mammalian forebrain. Mutations in FOXG1 have been reported to be involved in the onset of Rett Syndrome, for which sequence alterations of MECP2 and CDKL5 are known. While visual alterations are not classical hallmarks of Rett syndrome, an increasing body of evidence shows visual impairment in patients and in MeCP2 and CDKL5 animal models. ⋯ No alterations were observed in retinal structure. By examining a cohort of FOXG1-mutated individuals with a panel of neuro-ophthalmological assessments, we found that all of them exhibited visual alterations compatible with high-level visual dysfunctions. In conclusion our data show that Foxg1 haploinsufficiency results in an impairment of mouse and human visual cortical function.