Neuroscience
-
The mammalian brain has evolved in close synchrony with the natural environment; consequently, trends toward disengagement from natural environments in today's industrialized societies may compromise adaptive neural responses and lead to psychiatric illness. Investigations of rodents housed in enriched environments indicate enhanced neurobiological complexity; yet, the origin of these stimuli, natural vs. manufactured, has not been sufficiently explored. In the current study, groups of rats were exposed to one of three environments: (1) a standard environment with only food and water, (2) an artificial-enriched environment with manufactured stimuli and (3) a natural-enriched environment with natural stimuli. ⋯ Both enriched groups exhibited less anxiety in response to a novel object but the natural-enriched rats exhibited less anxiety-typical behavior in response to a predator odor than the other groups. Less fos activation in the amygdala was observed in both enriched groups following a water escape task whereas an increase in fos activation in the nucleus accumbens was observed in the natural-enriched animals. Thus, the current findings indicate the potential importance of exposure to complex environments, especially natural-like habitats, in the maintenance of emotional health, perhaps providing a buffer against the emergence of anxiogenic responses.
-
This study aimed to test the hypothesis that, during extended wakefulness, parasympathetic activity is associated with the depth of the subsequent recovery sleep in mice. Fourteen male C57BL/6 mice were implanted with electrodes for sleep recording. Continuous spectral analysis was performed on the electroencephalogram (EEG) to obtain theta power (6-9Hz) and delta power (0-4Hz), as well as the R-R interval signals in order to quantify the high-frequency power (HF) and normalized low-frequency power (LF%) that are used to assess parasympathetic and sympathetic activity, respectively. ⋯ Both the rise in HF and theta power during extended wakefulness were found to be positively correlated with the delta power rebound. Furthermore, the HF change during extended wakefulness was also correlated with the amount of sleep loss and the enhancement of waking theta power. Our finding suggests that waking parasympathetic activity intimately reflects the cumulative sleep pressure, suggesting a potential role to be an autonomic marker for sleep propensity.
-
We have previously demonstrated that inferotemporal neurons respond to objects viewed from a range of angles, even without any prior experience in learning the associations among the views. Several models have been proposed to explain object recognition across disparate views. However, direct neuronal evidence is rare. ⋯ The time period over which the similarity was significant began and endured similarly for 60° separated views at 190-850ms. For 90° separated views, the time period over which the similarity was significant was shorter and started later, at 230-550ms. The results demonstrate the dynamics of cell population activity and suggest a possible explanation for object recognition across disparate views.
-
Decrease in brain amyloid-β (Aβ) accumulation is a leading strategy for treating Alzheimer's disease (AD). However, the intrinsic mechanism of the regulation of brain Aβ production is largely unknown. Previously, we reported that ILEI (also referred to as FAM3C) binds to the γ-secretase complex and suppresses Aβ production without inhibiting γ-secretase activity. ⋯ ILEI expression levels in brain peaked during the postnatal period and declined with age. In comparison with age-matched control brains, the number of ILEI-immunoreactive neurons decreased in AD brains, although the subcellular localization was unaltered. Our results suggest that a decline of ILEI expression may cause accumulation of Aβ in the brain and the eventual development of AD.
-
Early-life events have long-term effects on brain structures and cause behavioral alterations that persist into adulthood. The present experiments were designed to investigate the effects of prenatal stress on diazepam-induced withdrawal syndrome and serotonin-1A (5HT1A) receptor expression in the raphe nuclei of adult offspring. ⋯ To our knowledge, this study is the first to demonstrate that maternal exposure to chronic footshock stress enhances diazepam withdrawal symptoms and alters 5HT1A receptor gene expression in the raphe nuclei of adult offspring. Thus, more studies are needed to clarify the mechanisms underlying the decrease of 5HT1A receptors expression in the raphe nuclei of PS rats.