Neuroscience
-
Systemic injections of 17β-estradiol (E2) in ovariectomized (OVX) female rats rapidly enhance dorsal striatal dopamine (DA) release in response to amphetamine (AMPH). Additionally, a single injection of E2 rapidly (within 30min) enhances amphetamine-induced DA release. In situ studies show that this rapid effect of E2 occurs specifically within the dorsal striatum (DS). ⋯ Local infusions of E2 into the DS resulted in a greater amphetamine-induced dorsal striatal DA release in comparison to vehicle. Local infusions of E2 into the mPFC or the SN did not result in an enhancement of amphetamine-induced DA levels in the DS. These studies suggest that increases in dorsal striatal DA release in response to systemic E2 are a consequence of E2 actions within the DS itself.
-
In monolingual humans, language-related brain activation shows a distinct lateralized pattern, in which the left hemisphere is often dominant. Studies are not as conclusive regarding the localization of the underlying neural substrate for language in sequential language learners. Lateralization of the neural substrate for first and second language depends on a number of factors including proficiency and early experience with each language. ⋯ Thus, the avian auditory cortex may preserve lateralized neuronal traces of old and new tutor song memories, which are dependent on proficiency of song learning. There is striking resemblance in humans: early-formed language representations are maintained in the brain even if exposure to that language is discontinued. The switching of hemispheric dominance related to the acquisition of early auditory memories and subsequent encoding of more recent memories may be an evolutionary adaptation in vocal learners necessary for the behavioral flexibility to acquire novel vocalizations, such as a second language.
-
Previous studies have shown that iron redistribution and deposition in the brain occurs in some neurodegenerative diseases, and oxidative damage due to abnormal iron level is a primary cause of neuronal death. In the present study, we used the single prolonged stress (SPS) model to mimic post-traumatic stress disorder (PTSD), and examined whether iron was involved in the progression of PTSD. The anxiety-like behaviors of the SPS group were assessed by the elevated plus maze (EPM) and open field tests, and iron levels were measured by inductively coupled plasma optical emission spectrometer (ICP-OES). ⋯ The stress induced region-specific changes in both protein and mRNA levels of TfR1 and Fn. Moreover, swelling mitochondria and cell apoptosis were observed in neurons in brain regions with iron accumulation. We concluded that SPS stress increased iron in some cognition-related brain regions and subsequently cause neuronal injury, indicating that the iron may function in the pathology of PTSD.
-
We previously found that oxytocin (OT) receptor (OTR) binding density in the medial amygdala (MeA) correlated positively with social interest (i.e., the motivation to investigate a conspecific) in male rats, while OTR binding density in the central amygdala (CeA) correlated negatively with social interest in female rats. Here, we determined the causal involvement of OTR in the MeA and CeA in the sex-specific regulation of social interest in adult rats by injecting an OTR antagonist (5ng/0.5μl/side) or OT (100pg/0.5μl/side) before the social interest test (4-min same-sex juvenile exposure). OTR blockade in the CeA decreased social interest in males but not females, while all other treatments had no behavioral effect. ⋯ This was further reflected by reduced CeA-OT release during social interest in females that expressed low compared to high social interest. We discuss the possibility that this reduction in OT release may be a consequence, rather than a cause, of exposure to a social stimulus. Overall, our findings show for the first time that extracellular OT release in the CeA is similar between males and females and that OTR in the CeA plays a causal role in the regulation of social interest toward juvenile conspecifics in males.
-
Low frequency stimulation (LFS) has been proposed as a new approach in the treatment of epilepsy. The anticonvulsant mechanism of LFS may be through its effect on GABAA receptors, which are the main target of phenobarbital anticonvulsant action. We supposed that co-application of LFS and phenobarbital may increase the efficacy of phenobarbital. ⋯ Post-synaptic mechanisms may be involved in observed interactions. Obtained results implied a positive interaction between LFS and phenobarbital through GABAA currents. It may be suggested that a combined therapy of phenobarbital and LFS may be a useful manner for reinforcing the anticonvulsant action of phenobarbital.