Neuroscience
-
Mild cognitive impairment (MCI) represents a transitional state between normal aging and Alzheimer's disease (AD). Non-invasive diagnostic methods are desirable to identify MCI for early therapeutic interventions. In this study, we proposed a support vector machine (SVM)-based method to discriminate between MCI patients and normal controls (NCs) using multi-level characteristics of magnetic resonance imaging (MRI). ⋯ Applying the proposed method to the experimental data from 29 MCI patients and 33 healthy subjects, we achieved a classification accuracy of up to 96.77%, with a sensitivity of 93.10% and a specificity of 100%, and the area under the curve (AUC) yielded up to 0.97. Furthermore, the most discriminative features for classification were found to predominantly involve default-mode regions, such as hippocampus (HIP), parahippocampal gyrus (PHG), posterior cingulate gyrus (PCG) and middle frontal gyrus (MFG), and subcortical regions such as lentiform nucleus (LN) and amygdala (AMYG). Therefore, our method is promising in distinguishing MCI patients from NCs and may be useful for the diagnosis of MCI.
-
Adult brain plasticity can be investigated using reversible methods that remove afferent innervation but allow return of sensory input. Repeated intranasal irrigation with Triton X-100 in adult zebrafish diminishes innervation to the olfactory bulb, resulting in a number of alterations in bulb structure and function, and cessation of the treatment allows for reinnervation and recovery. Using bromodeoxyuridine, Hu, and caspase-3 immunoreactivity we examined cell proliferation, differentiation, migration, and survival under conditions of acute and chronic deafferentation and reafferentation. ⋯ While the amount of cell migration into the olfactory bulbs was not affected by fish age, more of the newly formed cells became neurons in older fish. Younger fish displayed more cell death under conditions of chronic deafferentation. In sum, our results show that reversible deafferentation affects several aspects of cell fate, including cell differentiation, migration, and survival, and age of the fish influences the response to deafferentation.
-
Migraine affects predominantly women. Furthermore, epidemiological studies suggest that obesity is a risk factor for migraine and this association is influenced by sex. However, the biological basis for this bias is unclear. ⋯ This is in contrast to what we have previously shown in males and indicates a sex difference in the photophobic behavior of mice. Comparison of 20-25-week-old RD mice with 8-11-week-old RD mice suggests that age or age-related weight gain may contribute to capsaicin-evoked photophobic behavior in males, but not in females. These findings suggest that obesity exacerbates photophobia in both sexes, but additional work is needed to understand the sex- and age-specific mechanisms that may contribute to photophobia and trigeminal pain.
-
To investigate the neuroprotective role of sodium valproate (VPA) in a hippocampal neuronal cell line (HT22) and the hippocampus of zebrafish after exposure to radiation. ⋯ ROS generation after radiation exposure contributes to DNA damage in the zebrafish brain. VPA inhibits ROS generation by activating the Nrf2/HO-1 pathway, which improves cognitive behavior following radiation-induced neuronal injury.
-
For years, the prevailing hypothesis for Alzheimer's Disease (AD) has proposed a mechanism by which deposition of amyloid-beta (Aβ) in the brain is independent of tau-pathologies and cognitive decline. However, despite extensive research on the disease, the mechanisms underlying the etiology of tau-pathology remain unknown. Previous research in our lab has shown that imatinib methanesulfonate (IM) blocks the peripheral production of Aβ in response to LPS, thereby preventing the buildup of Aβ in the hippocampus, and rescuing the cognitive dysfunction that normally follows. ⋯ In addition, 7days of LPS-induced inflammation and Aβ production also leads to elevated total tau protein expression. Our results may provide support for the hypothesis that enhanced expression of tau following LPS administration is a protective measure by hippocampal neurons to compensate for the loss of the microtubule-stabilizing protein due to phosphorylation. More importantly, our results support the hypothesis that blocking the production of Aβ that follows inflammation also leads to reduced tau phosphorylation, lending credence to a model in which Aβ initiates tau phosphorylation.