Neuroscience
-
Despite recent progress on neural pathways underlying individual behaviors, how an animal balances and prioritizes behavioral outputs remains poorly understood. While studying the relationship between hunger-induced feeding and pup-induced maternal behaviors in virgin female mice, we made the unexpected discovery that presence of pups strongly delayed and decreased food consumption. Strikingly, presence of pups also suppressed feeding induced by optogenetic activation of Agrp neurons. ⋯ Furthermore, chemogenetic activation of Vglut2+ neurons in the medial preoptic area (mPOA), a region critical for maternal behaviors and motivation, was sufficient to suppress hunger-induced feeding. However, muscimol inhibition of the mPOA, while disrupting maternal behaviors, did not prevent pup suppression of feeding, indicating that neural pathways in other brain regions may also mediate such an effect. Together, these results provide novel insights into neural coordination of pup care and feeding in mice and organizations of animal behaviors in general.
-
The dysregulation of posttranslational modifications of the microtubule-associated protein (MAP) tau plays a key role in Alzheimer's disease (AD) and related disorders. Thus, we have previously shown that beta amyloid (Aβ)-induced neurotoxicity was mediated, at least in part, by tau cleavage into the tau45-230 fragment. However, the mechanisms underlying the toxicity of tau45-230 remain unknown. ⋯ Our results indicated that tau45-230 significantly reduced the number of organelles transported along hippocampal axons. This altered axonal transport did not correlate with changes in the total number of organelles present in these cells or in motor protein levels. Together these results suggested that tau45-230 could exert its toxic effects by partially blocking axonal transport along microtubules thus contributing to the early pathology of AD.
-
Although deep-brain stimulation (DBS) of the lateral habenula (LHb) has been successfully applied to treatment-resistant depression for years, the mechanism is still unclear. Previous researches have demonstrated that LHb-DBS elevates brain monoamine neurotransmitters. However, these changes do not account for the treatment efficacy on treatment-resistant depression, or the rapid behavioral effects in rats; the evidence suggests that altered synaptic potentiation may contribute to the treatment effects. ⋯ These effects were blocked by the L-type voltage-dependent calcium channel (L-VDCC) antagonist, nifedipine. Furthermore, in vitro LHb-DBS increased both the frequency and width of spontaneous spikes generated by CA1 pyramidal neurons, which contribute to Ca2+ influx through L-VDCC. Our findings suggest that L-VDCC-mediated synaptic potentiation underlies the antidepressant effects of LHb-DBS, and suggest that astrocytic regulation of Ca2+ influx and associated synaptic changes maybe novel targets for developing antidepressant treatments.
-
Visceral pain in inflammatory and functional gastrointestinal conditions is a major clinical problem. The exact mechanisms underlying the development of pain, during and after visceral inflammation are unknown. However, clinical and pre-clinical evidence suggests plasticity within the spinal cord dorsal horn is a contributing factor. ⋯ Conversely, several measures of intrinsic excitability were altered in a manner that would decrease SDH network excitability following colitis. We propose that during inflammation, sensitization of colonic afferents results in increased signaling to the SDH. This is accompanied by plasticity in SDH neurons whereby their intrinsic properties are changed to compensate for altered afferent activity.
-
Sestrin 2 (SESN2) is a stress-inducible protein that protects tissues from oxidative stress and delays the aging process. However, its role in maintaining the functional and structural integrity of the cochlea is largely unknown. Here, we report the expression of SESN2 protein in the sensory epithelium, particularly in hair cells. ⋯ Hair cell death occurred by caspase-8 mediated apoptosis. Compared to C57BL/6J control mice, Sesn2 KO mice displayed enhanced expression of proinflammatory genes and activation of basilar membrane macrophages, suggesting that loss of SESN2 function provokes the immune response. Together, these results suggest that Sesn2 plays an important role in cochlear homeostasis and immune responses to stress.