Neuroscience
-
Choline is essential to the development and function of the central nervous system and supplemental choline during development is neuroprotective against a variety of insults, including neurotoxins like dizocilpine (MK-801). MK-801 is an NMDA receptor antagonist that is frequently used in rodent models of psychological disorders, particularly schizophrenia. At low doses, it causes cognitive impairments, and at higher doses it induces motor deficits, anhedonia, and neuronal degeneration. ⋯ Using doublecortin and Ki67 to mark neurogenesis and cell division, respectively, in the hippocampus, we found that prenatal choline supplementation, in the face of MK-801 toxicity, protected against reduced hippocampal plasticity. Taken together, the current findings suggest that prenatal choline supplementation protects against a variety of behavioral and neural pathologies induced by the neurotoxin, MK-801. This research contributes to the growing body of evidence supporting the robust neuroprotective capacity of choline.
-
Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine and behavioral responses to stress and has been implicated in the pathophysiology of several disorders including anxiety, depression, and addiction. Using a validated CRFR1 reporter mouse line (bacterial artificial chromosome identified by green fluorescence protein (BAC GFP-CRFR1)), we investigated the distribution of CRFR1 in the developing mouse forebrain. Distribution of CRFR1 was investigated at postnatal days (P) 0, 4, and 21 in male and female mice. ⋯ We report a sexually dimorphic expression of CRFR1 within the rostral portion of the anteroventral periventricular nucleus of the hypothalamus (AVPV/PeN), a region known to regulate ovulation, reproductive and maternal behaviors. Females had a greater number of CRFR1-GFP-ir cells at all time points in the AVPV/PeN and CRFR1-GFP-ir was nearly absent in males by P21. Overall, alterations in CRFR1-GFP-ir distribution based on age and sex may contribute to observed age- and sex-dependent differences in stress regulation.
-
Better cognitive performance and greater cortical and hippocampal volume have been observed in individuals who undertook aerobic exercise during childhood and adolescence. One possible explanation for these beneficial effects is that juvenile physical exercise enables better neural development and hence more cells and neuronal circuitries. It is probable that such effects occur through intracellular signaling proteins associated with cell growth, proliferation and survival. ⋯ Results showed that physical exercise increases the number of neuronal and non-neuronal cortical cells and hippocampal neuronal cells in adolescent rats. Moreover, mTOR overexpression was found in the cortical region of exercised adolescent rats. These findings indicate a significant cellular proliferative effect of aerobic exercise on the cerebral cortex in postnatal development.
-
Tardive dyskinesia (TD) is a potentially disabling condition encompassing all delayed, persistent, and often irreversible abnormal involuntary movements arising in a fraction of subjects during long-term exposure to centrally acting dopamine receptor-blocking agents such as antipsychotic drugs and metoclopramide. However, the pathogenesis of TD has proved complex and remains elusive. To investigate the mechanism underlying the development of TD, we have chronically exposed 17 Cebus apella monkeys to typical (11) or atypical (6) antipsychotic drugs. ⋯ Haloperidol treatment significantly upregulated the levels of serotonin 5-HT2A receptor, NR2A-containing NMDA receptors, and tyrosine hydroxylase contents in the monkey putamen, whereas clozapine regulated putamen NMDA receptor levels and tyrosine hydroxylase contents, and 5-HT2A and dopamine transporter outside the putamen. Comparisons of neurochemical alterations between dyskinetic and non dyskinetic animals within the haloperidol-treated group indicate that modulations of 5-HT2A, metabotropic glutamate type 5, NR2A- and NR2B-containing NMDA receptors, and vesicular monoamine transporter type 2 levels were restricted to the non dyskinetic group. The foregoing results suggest that TD is associated with complex deficient adaptation in aminergic and glutamatergic neurotransmission in the striatum of non-human primates chronically exposed to antipsychotic drugs.
-
Successful response inhibition relies on the suppression of motor cortex activity. The striatum has previously been linked to motor cortex suppression during the act of inhibition (reactive), but activation was also seen during anticipation of stop signals (proactive). More specifically, striatal activation increased with a higher stop probability. ⋯ We found that striatal activity during reactive inhibition was higher when subjects expected stop signals. These results help explain conflicting findings of previous studies on the association between striatal activation and inhibition, since we demonstrate a crucial role of the subjects' expectation of a stop signal and thus their ability to prepare for a stop in advance. In conclusion, the current results show for the first time that striatal contributions to reactive response inhibition are, in part, related to subjective anticipation.